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PREFACE

THE book is intended as a class text in Applied Mathematics at
Advanced Level G.C.E. and covers practically all the requirements
of the various examining boards in Applied Mathematics and
Theoretical Mechanics.

It is not meant to be a “‘teach yourself” book, but it is hoped that
the intelligent reader would be able to use it in this way. The book
provides an introduction to the Mechanics of Particles (Chapters 4—
15)and Rigid Bodies (Chapters 16-21), quite apart from its Advanced
Level orientation. An introduction to vector algebra (Chapters 2
and 3) is a main feature of the book and this is used to unify and
clarify the work.

The chapters have been arranged in a logical order which should
help student and teacher alike to find their way about the book. This
is not to imply, however, that the order in which the chapters are
read should necessarily follow that in the book. One system that
has worked well in practice is to study Chapters 1 and 2, then work
through Chapters 4-11 (omitting Chapter 10)—doing the easy
examples and some of the easier exercises, omitting formal proofs
—then, when the student’s mathematical techniques are sufficient,
to return to Chapter 3 and rework thoroughly.

The exercises set at the ends of sections within the chapters are,
for the most part, straightforward. All our readers should attempt
these. Those at the ends of the chapters are often more testing and
include questions from past papers set by the various examining
boards.

Even with the above approach the contents of Chapter 3 (Vector
Algebra) will probably need more than one reading. Hence some
of the sections have been starred so that they may be omitted at a
first reading of Part 1.

Other points of interest are:

(a) The traditional division into Statics and Dynamics has been
abandoned in favour of a division into the study of particles and
rigid bodies. This allows a simple logical development with Statics
being treated as a special case of Dynamics. However, for those who
prefer the other approach, the appropriate chapters can easily be
treated separately.
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(b) The work in Chapter 16 (Motion of Systems of Particles) does
not appear on examination syllabuses but is included to provide a
framework for the subsequent work in Part II. Indeed, in the book
as a whole, there are a number of topics which do not appear on all
examination syllabuses. They are included in order that the book
should be coherent and give a more or less complete account of the
theoretical mechanics of a particle and rigid bodies at this level. If
Chapter 16is omitted, the teacher will have to supply some discussion
of the factors affecting the motion of a rigid body.

(c) A chapter on quantities and their units is included, SI units
being used throughout the book. British Standard signs, symbols
and abbreviations have been used almost without exception.

We should like to express our thanks to the Joint Matriculation
Board (J.M.B.), the Delegates of Local Examinations, Oxford
(Oxford), London University (London) and the Welsh Joint Educa-
tion Committee (W.J.E.C.) for granting us permission to use ques-
tions from their examinations in this book. The abbreviations above
have been used to indicate the source of such questions. Also some
of the London University and Welsh Joint Education Committee
questions have been “metricized”’; such modified questions are
indicated by a  and are the responsibility of the authors.

Finally, we should like to thank our publishers for the care and
trouble they have taken over the general presentation of the text, and
those of our colleagues who have helped with the checking of some of
the questions.

HM.
JH.G.P.
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PART I—PARTICLES

A particle is a body whose size is negligible but whose mass is not.

In this part of the book large bodies, such as trains, cars etc., will
be treated as if they were particles acted upon by the external forces.
The justification of this is given in Section 16.2 (Part II).



1
QUANTITIES AND UNITS

1.1. BASIC QUANTITIES

To answer problems about the motion of particles we must first be
able to describe their motion. So a set of quantities is needed to
measure how far the particle travels, how quickly it gets there, how
difficult it is to stop, etc.

It has been found convenient to build up such a set of quantities
from three basic ones: length, mass and time. These three are not
defined in terms of other quantities, but are measured by comparing
with specified standards.

Other quantities are derived from these three basic ones. For
example, the average speed of a particle is defined as

distance travelled

time taken

and consists of a length divided by a time.

1.2. SYSTEMS OF UNITS

Once the units in which to measure length, mass and time have been
decided, the units of derived quantities can be built up from them.
Thus, if length is measured in metres and time in seconds, the units of
average speed are metres/second. A set of units built up in this way is
called a coherent system of units.

In this book the International System (SI) units are used. These
form a coherent system in which the units of length, mass and time
are the metre (m), kilogramme (kg) and second (s) respectively*.

A metre is defined in terms of a wavelength associated with the
Krypton-86 atom ; a kilogramme is the mass of a standard bar kept
in Sévres, France; a second is a specified number of periods of a
radiation associated with the Caesium 133 atom.

* The full International System includes basic units of current, temperature and
luminous intensity. These are (of course), for work outside the scope of this book.

3



QUANTITIES AND UNITS
1.3. DERIVED QUANTITIES

A list of some of the- more important derived quantities follows
together with their SI units. Formal definitions and detailed con-
sideration of these and other quantities are given in later chapters.

Quantity SI unit

speed rate of change of distance m/s

acceleration  rate of change of speed m/s?

force mass x acceleration kg m/s? = newton (N)
work force x distance N m = joule (J)
power rate of doing work J/s = watt (W)

When two quantities have the same basic structure (in terms of
mass, length and time), they will have the same units. Such quanti-
ties are said to have the same dimensions. For example, experiments
show that in a spring

natural length

modulus (A1) = tension x -
extension

Hence the units in‘which A is measured, in the International System,
are newton m/m or newton and 1 is said to have the dimensions of a
force. A quantity which is a ratio and has no units is called dimen-
stonless.

1.4. PRACTICAL UNITS

SI units are not always of convenient size for practical purposes, and
other “practical” units of length, mass, speed etc. exist. A list of some
of the more common practical units with their SI equivalents follows :

1 centimetre (cm) = 0-01 m
1 kilometre (km) = 1000 m
1 gramme (g} = 0-001 kg
1 tonne(t) = 1000 kg

1 hour (h) = 3600s
1km/h = 5/18 m/s

1 kilonewton (kN) = 1 000 N
1 kilowatt (kW) = 1000 W,

Although information in a problem may be supplied in these
practical units, it is usual, and often essential, to work throughout in
one coherent system (in our case SI units). If this is not done,
mistakes may occur since many formulae (e.g. P = mf, H = Fu,
K.E. = 3mv?) depend upon the quantities they contain being
expressed in coherent units.



EXERCISES
EXERCISES 1

1. The magnitude of the momentum of a body is measured by
multiplying its mass by its speed. State the SI units of momentum.

2. The measurement of area in general is derived from the
measurement of the area of a rectangle (length x breadth). State the
SI units of area.

3. What are the SI units of volume and density?

4. The impulse of a constant force is the product of the force and
the time for which it acts. State the SI units of impulse and show that
impulse and momentum have the same dimensions.

5. In the formula W = 1I(v/r)?, W is work done, v a speed, r a
length. Find the SI units in which [ is measured.

6. When a truck is pulled along a level track, the resistances due to
friction, air resistance, etc., total 70 newton per tonne. If the truck
has a mass of 2 500 kg, calculate the total resistance in SI units.

7. Rewrite the following, expressing all quantities in SI units: “A
train, of mass 300 t, ascends an incline of 1 in 70 at a constant speed of
18 km/h. Ifthe resistances total 50 000 N, then the engine is working
at 510kW.”



2
VECTOR QUANTITIES

2.1. SCALARS AND VECTORS

Definition-—A scalar quantity has magnitude only and is not related
to any definite direction in space, e.g. mass, temperature, time, work
and electric charge. Scalars are completely specified by numbers
which measure their magnitude in terms of some chosen unit.
Operations with scalar quantities follow the usual laws of algebra.

Other quantities exist which have both magnitude and direction,
e.g. velocity, acceleration force and magnetic field intensity. An
example which does not have physical associations is the directed
segment of a straight line PQ. The length PQ is the magnitude of
the vector. The direction is parallel to the line and in the sense from
Pto Q. We can represent all quantities which have both magnitude
and direction by directed line segments.

Definition—A vector is.a quantity which has both magnitude
and direction and which can be compounded meaningfully* by
the triangle or parallelogram rule described later in Section 2.3.

In addition to representing a vector by PQ we shall also use bold

Figure 2.1

* Before a physical quantity is treated as a vector it should be proved theoretically,
or shown experimentally, that it can be meaningfully compounded by the triangle
rule. (Some directed quantities such as finite rotations do not give meaningful results
when compounded in this way.) However, in this book we shall deal only with
directed physical quantities which are vectors and their vector nature will be assumed
without proof.



THE ANGLE BETWEEN TWO VECTORS

faced type such as A4, a to indicate a vector. The modulus of a vector a
is the positive number which is a measure of the length of the directed
segment and will be denoted by la| or a.

Two special cases arise. If the modulus of a vector is zero (Q
coincides with P), we refer to the zero vector 0 the direction of which
is indeterminate. If the modulus of the vector is unity, it is referred
to as a unit vector and will be denoted by 4, b, ..., the circumflex
indicating a unit vector.

It is important to realize that, in gcneral (refer to § Sectlon 3.9),
a vector is not fixed in space. In Figure 2.1, AB CD EF and PQ are
all equal in length and parallel to one another and are four of the
many possible representations of the same vector or, alternatively,
they represent four equal vectors.

2.2. THE ANGLE BETWEEN TWO VECTORS
Let the two vectors, a and b, be represented by OP and 5@

/ P //
(] - 6
] Q Q o

Figure 2.2

Definition—The angle between two vectors is 8, 0 < 6 < = (refer
to Figure 2.2), the angle between OP and OQ where both vectors
are drawn with the arrows pointing away from the point of inter-
section. When @ is equal to n/2, the vectors are said to be per-
pendicular and when 0 is equal to O or =, they are said to be parallel.

Exercises 2a
1. Which of the following are vectors and which are scalars?

(a) energy (b) weight (¢) electric potential
(d) work (e) deceleration (f) specific heat
(g) volume (h) temperature (j) force

2. Draw, on the same diagram, directed line segments to repre-
sent the following horizontal vector quantities :

(a) A force F, of 10 N in a direction 45° E. of N.

(b) A force F, of 8 N in a direction 120° W. of N.

(¢) A displacement d of 10 m in a direction 150° E. of N.

(d) A force F; of 10 N in a direction 135° W. of N.

(e) A velocity v, of 10 m/s in a direction 45° E. of N.

(f) An acceleration fof 8 m/s? in a direction due West.

(g) A velocity v, of 10 m/s in a direction 135° E. of N.

7



VECTOR QUANTITIES

Are any of the forces equal and opposite? Can the same directed
line segment represent two or more of these vectors?

3. In the previous question state the angle between the vectors:

(a) Fiand d

(b) fand F,

(¢) F,and v,.

(d) Are any two of the vectors perpendicular to each other?

(e) Are any two of the vectors parallel to each other?

4. Represent diagrammatically a horizontal acceleration f of
8 m/s? in a direction 20 degrees east of north. On the same diagram
represent the following horizontal accelerations :

(@) 24 m/s? in the direction of f

(b)) 2m/s? in the direction of f

(c) 16 m/s? in a direction at right angles to f(two cases).

5. A man walks 10km north and then 74 km east. Represent
these two displacements graphically on the same diagram and find
the resulting displacement: (a) graphically, (b) analytically. (Note
this is an example of the triangular rule of vector addition.)

2.3. COMPOUNDING VECTORS

Vectors have both magnitude and direction and it is difficult to
say from first-hand reasoning how they should be combined.
However, consider the special case of displacements.

If from P, I walk 5km due East this displacement can be repre-

sented completely by the directed segment AB (refer to Figure 2.3).

_ (o
//
- 45°
A B
Figure 2.3 Figure 2.4

If I now walk a further distance of 3 km N.E., this further displace-
ment can be represented by BC. It would seem reasonable to say
that the final result of my journey is the same as if I had walked a
@ance represented by the length of 42 in the direction from A to C.
AC is called the resultant of AB and BC. It is found in practice that
vector quantities such as force, acceleration, velocity, etc., can be
compounded in the same way, representing them by directed

8



COMPOUNDING VECTORS

segments. The resultants thus obtained being meaningful, this is
known as the triangle rule.

Complete the parallelogram ABCD (refer to Figure 2.4).
Because the opposite sides are equal and parallel it follows that
AD also represents the second displacement of 3km north east.

Thus AC is also the resultant of AB and AD. This is known as the
parallelogram rule.

Example 1. In Figure 2.3, find the actual magnitude and direction
of the displacement represented by AC.

By the cosine rule:
AC? = AB® + BC? — 24B. BC cos ABC.
Now AB = 5 units, BC = 3 units and / ABC = 135°.
) AC? = 5% + 32 — 2.5.3cos 135°
= 34 + 30cos 45°.
AC = 743.

By the sine rule:

BC  AC
sin BAC sin ABC

3 7-431

sin BAC  sin 135°

sin BAC = 02854
/ BAC = 16°35..

AC represents a displacement of 7-43 kmin a direction 16° 35’ N. of E.

Example 2. A small aircraft is flying with a velocity of 100 km/h
due north. It is also being blown by the wind which has a velocity of
40 km/h from the north west. Find the velocity of the aircraft over
the ground.

The velocity of the aircraft over the ground is the result of com-
pounding its own velocity with the wind’s velocity. Representing

9



VECTOR QUANTITIES
these by AB and B_é, as shown in Figure 2.5(b), then AC represents

100 km/h 8
40
N R 4,5°
450 ¢
45 1004 /
* 4
/R
,/
i
40 km/h Al
(a) (b)
{Space diagram) (Vector diagram)
Figure 2.5

the velocity over the ground. Applying the cosine rule to the vector
diagram,

R? = 100% + 402 — 2.100. 40 cos 45°.

R = 77-10.
By the sine rule
40 R
sinf  sin45°
g 0sinds®
SIME =900

and, since @ is less than 180°, 6 = 21° 31".
The velocity of the aircraft over the ground is 77-1 km/h in a
direction N. 21° 31’ E.

Exercises 2b

1. Find the magnitude and direction of the resultant of two forces
of magnitudes 5N and 8 N, the angle between them being 120
degrees.

2. Find the magnitude and direction of the resultant of two
forces of magnitudes 60 N and 120 N, the angle between them
being 30 degrees.

3. Find the resultant of two vectors, of magnitudes 15 and 8 units,
which are at right angles to one another.

4. A boat is sailing at a speed of 10 knots due north. It is also
being carried by a strong current of 6 knots in a direction N. 126°
52" E. Find the speed and direction of the boat as seen by an observer
on the land.

10



COMPONENTS OF A VECTOR

5. A liner is travelling at 18 km/h and a passenger walks at 3 km/h
across the ship in a direction inclined at 60 degrees to the forward
motion of the ship. Find his actual velocity in space.

6. Two forces P and Q have magnitudes of 4 N and 5 N and their
resultant has a magnitude of 6 N. Find the angle between P and Q.

7. A motor boat can travel at 20 km/h in still water. It crosses
a river estuary 1 km wide in which there is a tide of 6 km/h running
up the estuary. If the banks of the estuary are assumed to be
parallel, and the boat moves at right angles to the bank throughout
the journey, find the angle to the bank at which the boat must be
steered. How long does it take the boat to cross?

8. Find the magnitudes of two forces such that if they act at
right angles, their resultant is \/13 N, but if they act at an angle of
60 degrees to each other, their resultant is \/— N.

9. Two vectors P and Q are at right angles to each other. The
magnitude of P is 5 units and the magnitude of their resultant is
13 units. Find the magnitude of Q.

10. Find the vertical force and the force inclined at 30 degrees to
the horizontal which together have a resultant of 6,/3 N hori-
zontally.

2.4. COMPONENTS OF A VECTOR

In the previous section we considered how to compound two
vectors. It is often convenient to be able to do the reverse process,
that is, consider a vector as being compounded of two others. This
resolution of a_vector into two components can be carried out in
many ways. If AC represents the vector a, then takmg any point B
and joining AB and BC gives two components AB and BC. In most
cases it is desirable to take the two components at right angles.
If AB makes an angle 6 with AC then the magnitudes of the com-
ponent vectors represented by AB and BC are by trlgonometry
(refer to Figure 2.6), acos 6 and a cos (90° — 8) (or asin 6).

a cos (90°-6) ¢ 120 cos 20° N
or 4 a / 70° bt
1
i 90°-¢ 7

g sin 8
[ { 120 N
A acos 8 B 120 cos 70°N
Figure 2.6 Figure 2.7

Example 1. A plate-layer’s truck is being pulled along a railway line

11



VECTOR QUANTITIES

by means of a horizontal rope. The tension in the rope is 120 N and
the rope makes an angle of 20 degrees with the railway line. Find the
resolved parts of the force along and perpendicular to the line.

The two components (refer to Figure 2.7) are 120 cos 20° N along
the line and 120 cos (90° — 20°) = 120 cos 70° N perpendicular to
the line.

Example 2. A particle lies on a plane inclined at an angle 0 to the
horizontal. It is being pulled up the plane by a force of magnitude F,
at an angle a to the line of greatest slope. Find the components of F
vertically and horizontally.

Ptane

9 A G+a
L -— Horizontal

Figure 2.8

The angle the force F makes with the horizontal is 6 + « (refer to
Figure 2.8). Therefore the horizontal component of Fis F cos (6 + «)
and the vertical component of F is F cos {90° — (6 + a)}.

Exercises 2¢

1. Find the components of the following horizontal vectors in
the directions north and east :

(a) Force of 5 units in a direction due south.

(b) Velocity of 30 units in a direction N. 120° E.

{(c) Acceleration of 12 units in a direction N. 45° W.

{(d) Force of 8 units in a direction N. 150° W,

(e) Velocity of 25 units in a direction due west.

(f} Acceleration of 8 units in a direction N. 30° E.

2. A stone leaves a man’s hand with a velocity of 100 cm/s at an
angle of 60 degrees to the upward vertical. Find the components
of the velocity perpendicularly and horizontally.

3. A particle on a plane inclined at an angle « to the horizontal,
is acted on by a force mg vertically downwards, a force R per-
pendicular to the plane in an upwards direction and a force uR
up the plane. Resolve all three forces horizontally and vertically
and give the sums of their components in the two directions.

12



RESULTANT OF TWO OR MORE VECTORS

4. A particle lying on a plane inclined at an angle « to the hori-
zontal is acted on by a force F making an angle of 45° — 0 with the
line of greatest slope. Resolve F vertically and horizontally (two
cases).

5. A circular hoop stands on the ground with its plane vertical.
A tangential force F is applied at a point P on its rim in an upward
direction. If / POQ = 90° + 6, where O is the centre of the hoop
. and Q its point of contact with the ground, find the horizontal and

-vertical components of Fin the case when (90° + 6) > 90°. Are they
the same if O < (90° + 6) < 90°?

2.5. RESULTANT OF TWO OR MORE VECTORS

We have seen in Section 2.3 that two vectors can be compounded
by the triangle rule (or parallelogram rule). Cons1der now the case

of three vectors represented by PQ QR and RS (refer to Figure 2.9).

Figure 2.9

Combining PQ and QR gives PR,anda further appl1cat10n of the
triangle rule to PRS gives the combination of PR and RS as PS. This
can be extended to any number of directed segments and so we have
the polygon rule, that if a number of vectors are represented by FQ
QR RS YZ taken in order, then their resultant is the vector
represented by PZ.

Example 1. A yacht is sailing with a velocity of 5km/h due north.
It is also being carried by a current of 2km/h in a direction south-
west. A man walks with a velocity of 3 km/h directly across the deck
from starboard to port. Find the man’s velocity relative to the shore.

The man is being carried by both the yacht and the current and
he is also walking across the deck, thus the resultant of the three

13



VECTOR QUANTITIES

velocities is required (refer to Figure 2.10). An accurate scale
drawing of the vector diagram gives R = 569, 8 = 50-9 degrees.

2 B8
A 5 km/h
\\' R D 3 C /i5°
‘v\\ \\
N N 5
3 km/h N o R
45° S e

\(‘

(a) 2 km/h (b) N A

(Space diagram) (Vector diagram)

Figure 2.10

An alternative method of finding the resultant of two or more
vectors is to find the components of the separate vectors and add
these to find the resultant components which are then compounded.
In 3-dimensional problems, components are required in three
directions. However, to illustrate the method we shall confine
ourselves to 2-dimensional problems.

Example 2. Consider again the problem posed in Example 1. Referring
to Figure 2.10 and resolving in the directions north and east we have:

Components
North East
Velocity of yacht 5 0
Velocity of current —2¢0s45° | —2¢0s(90° — 45°)
Velocity of man 0 -3
Total 5 2 3 2
otals - | =3 - —
2 ﬁ
ie. 3-586 —4-414
Thus —Rsinf = —4414
or Rsin 0 = 4414
and R cos 0 = 3-586.

14



EXERCISES
Squaring and adding
R? = 4-414* + 3-5862
R = 5-687.

4-414
Dividing tan 6 = 3586

with sin 0 and cos 8 positive.
c 0 = 50° 54"
The resultant is 569 km/h in a direction N. 50° 54' W. as before.

Exercises 2d

In the following Exercises 1-3, find the resultant vector by means
of components and check your results by a scale drawing:

1. A velocity of 10 km/h in a direction due west.

A velocity of 6 km/h in a direction N. 30° E.

A velocity of 8 km/h in a direction N. 120° E.
2. Aforce of 80N in a direction due south.

A force of 160 N in a direction N. 45° E.

A force of 30 N in a direction N. 150° W.

3. Anacceleration of 32 m/s? vertically downwards. An accelera-
tion of 40 m/s? at an angle of 5 degrees to the upward vertical
An acceleration of 20 m/s® vertically upwards.

4. Three forces of magnitudes 140, 100 and 160N act on a
particle. If the particle is in equilibrium, find the angle between the
100 and 140 N forces.

5. Three forces of magnitudes 2, 3 and 4 units act in one plane
on a particle. The angle between any two of the forces is 120 degrees.
Find their resultant.

6. Four horizontal forces have magnitudes and directions as

follows: 3./2 units, N.45°W.; 8 units, N.150°E.; 10 units,

N. 120° W.: 5./2 units, N. 135° E. Resolve the four forces in the
directions north and east, and hence find the magnitude and
direction of their resultant. Verify your result by a scale diagram.

EXERCISES 2

1. Two forces have magnitudes 12 and 15 and the angle between
them is 60 degrees. Find the magnitude and direction of their
resultant.

2. The angle between two vectors P and Q is 135 degrees, and

15



VECTOR QUANTITIES

the magnitude of their resultant is 7 units. If the magnitude of P
is also 7 units, find the magnitude of Q.

3. A yacht is sailing due west at 6 km/h and is being carried by
a current with a velocity of 3 km/h towards the north-west. A man
walks at 3 km/h directly across the deck from port to starboard.
Find the man’s velocity relative to the shore.

4. An aircraft is flying with a velocity of 320 km/h in a direction
N. 160° W. It is also being blown by the wind, which has a velocity
of 35km/h from the south. Find the velocity of the aircraft over
the ground.

5. A cyclist starts from A and rides 6 km due west, 4km due
north and 8 km in a direction N. 135° W. Find his distance and
bearing from A.

6. An aircraft is flying due north and is being carried by a cross
wind towards the east. In one hour the aircraft flies 360 km in a
direction N. 10° E. over the ground. Find the aircraft’s speed and
the wind’s speed.

7. Forces of magnitude 4, 2, and 2 N act on a particle and are
parallel respectively to the sides AB, AC and BC of an equilateral
triangle in the sense indicated by the letters. Find the magnitude
and direction of their resultant.

8. In Question 7, if the forces had been acting along the sides of
of the triangle ABC, would the magnitude of the resultant have been
altered?

9. Two forces P and Q have magnitudes 25 N and 7 N. If the
magnitude of their resultant is 24 N, find the angle between P and Q.

10. A bomb is moving vertically downwards with a speed of
400 m/s. At a height of 20 m above the ground it explodes and all
the particles are thereby given an additional speed of 200 m/s in
all directions. Find the diameter of the smallest circle within which
the particles will strike the ground (neglect the effect of gravity).

11. The angle between two forces P and @ is 112° 35/, and the
magnitude of their resultant is 12 units. If the magnitude of P is
13 units, find the magnitude of Q.

12. Six forces each of magnitude 10 units are parallel to, and
in the same sense, as the six sides of a regular hexagon ABCDEF.
Find the resolved parts of the six forces in two perpendicular
directions and verify that their resultant is zero.

13. Show that the resultant of the following five horizontal forces
is zero: 1 unit, N. 30° W.: 3 units, due west; 4 units, N.30°E.;
4 units, due east ; 5 units, N. 150° W.

14. A passenger in a train travelling at 60 km/h notices that the
rain, which is falling vertically, makes streaks on the window.
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EXERCISES

If the streaks are inclined at tan ™! 3 to the vertical, what is the speed
of a raindrop (assumed constant)?

15. A particle has two velocities whose magnitudes are equal.
When the magnitude of one of the velocities is halved, the angle
which their resultant makes with the other velocity is also halved.
Show that the angle between the velocities is 120 degrees.

16. The magnitude of the resultant of two forces P and Q is

Qﬁ and it makes an angle of 30 degrees with the direction of P.
Prove that the magnitude of P is either equal to, or double the
magnitude of Q.

17. A particle at the corner P of a cube is acted on by three
forces each of magnitude F, acting along the three diagonals of the
three adjacent faces of the cube which pass through P. Find the
resultant force.

18. Forces P and Q act along lines OA4 and OB respectively, and
their resultant is a force of magnitude P if the force P along OA
is replaced by a force 2P along 04, the resultant of 2P and Q is also
a force of magnitude P. Find

(a) the magnitude of Q in terms of P,

(b) the angle between OA4 and OB,

(¢) the angles which the two resultants make with OA.

(Oxford)
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3
VECTOR ALGEBRA

3.1. INTRODUCTION

Consider the following problem. A rectangular piece of land of
length L m and width Wm is to have a strip added to it, parallel to
the shorter edge, to increase its area to A m2. Find a formula for
determining the width of the strip.

T

-

w
i

b e L ’!-»x-—l:

Figure 3.1

Let the width of the strip be x m (refer to Figure 3.1). Then since
the area of a rectangle is the product of its length and breadth

W x (L +x)=A. s (@)

This equation is a ‘shorthand’ way of expressing the relationships
between the various dimensions involved: W, L, x and A being
symbols standing for the magnitudes of the width, length etc. (which
are real numbers); and x, + standing for the operations of multi-
plying and adding real numbers.

However, because of our knowledge of the way real numbers
behave, we can go further than simply writing down a shorthand
statement of the information given. We can convert equation (i)
into the form:

x=ViV(A— WL) e (i)

It is instructive to examine the step by step conversion of equation
(i) to equation (ii)

18



INTRODUCTION

WL+ x)=A4
WL + Wx = A {a(b + ¢) = ab + ac}
(WL + Wx)— WL=A4—- WL
(Wx + WLYy— WL =4 — WL {a+b=b+a}
Wx + (WL —-WL)y=A—-WL {(a+b) +c=a+(b+c)}
Wx=A—- WL

1 1

(VLVW)X = Vii/(A — WL) {albc) = (ab)c}

—I(A WL)
X =3 .

The properties of real numbers that we have assumed are indicated
in brackets on the right. Naturally equation manipulation is not
usually broken down in this way and these real number properties
are neither stated nor thought about, but it is on them that our
manipulation depends.

The main properties upon which real number algebra depends
are:

I Commutative a+b=>b+a, ab = ba,
II Associative (a+b)+c=a+(b+c) (ab)ec = albe),
III Distributive a(b + ¢) = ab + ac.

The commutative laws enable us to alter the order of symbols when
required ; the associative laws to omit brackets ; the distributive law
to expand brackets and to take out factors.

Suppose now that the letters g, b, ¢ etc. stood, not for real numbers
but for some other entities (say, for example, for different chemical
compounds). Suppose too, that +, x stood for some operations on
these entities—perhaps mixing together ( + }and heating together ( x )
for our chemical compounds. Then we could use the letters and
symbols to write shorthand statements about our entities, e.g.
a x b = ¢ could be a short way of saying chemical a when heated
with chemical b gives chemical c.

If, in addition, our operations were such that most if not all of
laws I, II, III were true, then the shorthand statements could be
manipulated in a manner similar to that of real number algebra.

For our chemical compounds, however, it would seem that while
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VECTOR ALGEBRA

Example 1. Show that|a + b| < |a| + |bl. Inwhat circumstances does
the equality hold ?

Referring to Figure 3.4, |a} is the number of units in the length
of PQ, |b| is the number of units in the length of QR, {@ + b| is the
number of units in the length of PR.

Since PQR is a triangle,

R < PQ + QR
or la + b < |al + |b].

The equality holds when PR = PQ + QR, that is, when P, Q, R
(in that order) are collinear, i.e. @ and b are parallel and in the
same sense.

Exercises 3a

1. Sketch directed line segments to represent vectors a 3 units
north, b 2 units north-east and ¢ 4 units west. Now sketch directed
line segments to represent the following vectors: (a) é (b) —c¢
a+bda+cl@a—c(f)b+b(ga+b—-chla+b+c
()a—b+ck)ya—5b—c

2. For the three vectors a, b, ¢ defined in Question 1, find the
values of the following quantities: (a) || (b) la + ¢| {c) |—¢| (d)
la + b| (e)lc + | (f)|c — al.

3. Show graphically that for any vectors @ and b, —(b — a) =
a — b. Isit true that [h — a| is equal to |a — b|?

4. Show that |@ — b| = ||a| — |bi|. In what circumstances does
the equality hold?

5. Show that |a + b + ¢ < |a| + |b| + |c|, where a, b and ¢ are
any three vectors.

6. If @ and b are two vectors such that |a| = |b| = |a + b|, find
the angle between a and b.

7. If a and b are two vectors such that (a| = || = |a — b|, find
the angle between a and 4.

8. Given that for any two vectors a and b, |a + b| = |a — b| and
also that the two vectors a — b and a + b are at right angles, show
that |a| = |b| and that @ and b are at right angles.

9. ABCDEF is a regular hexagon. If AB, BC rgpresent vectors
a, b respectively, find the vectors represented by DE, FE and DF.

10. _A man walks from A to B: his displacement from a point O
at A4, 0A = a and his displacement from O at B, OB = b. What is
his displacement from 4 when at B?
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INTRODUCTION

WL+ x)= A
WL+ Wx=A {alb + ¢) = ab + ac}
(WL + Wx) — WL=A—- WL
(Wx + WLYy— WL =A4A—- WL {a+b=b+a}
Wx +(WL—-WL)y=A-WL {(a+b+c=a+(b+0)}
Wx =A—- WL
—I—W(Wx)=—1w—/(A— WL)
(iW)x=i(A — WL) {albc) = (ab)c}
w w

1
= —(4 - WL).
x = (4 = WL)

The properties of real numbers that we have assumed are indicated
in brackets on the right. Naturally equation manipulation is not
usually broken down in this way and these real number properties
are neither stated nor thought about, but it is on them that our
manipulation depends.

The main properties upon which real number algebra depends
are:

1 Commutative a+b=>b+a, ab = ba,
II Associative (a+b)+c=a+(b+c), (ab) = albc),
III Distributive alb + ¢) = ab + ac.

The commutative laws enable us to alter the order of symbols when
required ; the associative laws to omit brackets ; the distributive law
to expand brackets and to take out factors.

Suppose now that the letters a, b, ¢ etc. stood, not for real numbers
but for some other entities (say, for example, for different chemical
compounds). Suppose too, that +, x stood for some operations on
these entities—perhaps mixing together (+ ) and heating together ( x )
for our chemical compounds. Then we could use the letters and
symbols to write shorthand statements about our entities, e.g.
a x b = c could be a short way of saying chemical a when heated
with chemical b gives chemical c.

If, in addition, our operations were such that most if not all of
laws I, II, IIT were true, then the shorthand statements could be
manipulated in a manner similar to that of real number algebra.

For our chemical compounds, however, it would seem that while

19
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the commutative laws might apply, the associative and distributive
laws would not. So it is unlikely that any useful algebra could be
developed. Many such algebras, however, have been created. For
example, operations called +, x can be defined for complex
numbers and for certain classes of polynomials which obey all the
laws, and for patterns of numbers called matrices which obey all
except the commutative law of multiplication. Their algebras are
very similar to the algebra of real numbers.

For vectors too, operations can be defined which satisfy laws
like these, and the development of a vector algebra is the subject
matter of the remainder of this chapter. Use will be made of con-
ventional algebraic signs but care will be taken to verify that the
laws of algebra hold for combinations of vectors.

3.2. ADDITION AND SUBTRACTION OF VECTORS

In Section 2.3 we described a method of compounding two or more
vectors by the triangle or parallelogram rule. We shall use the
+ sign from algebra and define the addition of vectors as follows:

Definition—If a is represented by the directed segment PQ and
b by the directed segment QR, then a + b is defined as the vector
which is represented by PR (refer to Figure 3.2).

R S a R
a+b bi ; j
4 o ’
P a Q P ] Q

Figure 3.2

Complete the parallelogram PQRS. Then the opposite sides being
equal and parallel, we have

*P_Q’ =SR and PS= @5
and since both PS + SR and ?Q + @2’ are equal to ﬁi, it follows
that:
b+a=a+b
That is, vectors satisfy the commutative law of addition.

* The equals sign is being used to indicate that PQ is both equal and parallel to SR,
The arrows indicate the sense in which PQ, SR,. .. are described. It follows that PQ
and SR can be regarded as representations of the same vector.

20



ADDITION AND SUBTRACTION OF VECTORS

__Now consider the addition of another vector ¢ represented by
RT in Figure 3.3. From the law of addition

PR=(a+5b and QT =(b+ ¢
(refer to Figure 3.3).

P a Q
Figure 3.3

Applying the law of addition again
(@+b)+c=PR+RT=PT=P0+0T=a+(b+o)

The argument can be extended to any number of vectors. Thus
vectors satisfy the associative law of addition and we can write
a + b + ¢ + --- without brackets being needed to indicate the order
of summation. .

Definition—If the vector b is represented by QR we define —b

to be the vector represented by ITQ, hence,
b+ (-5b)=0.
We now interpet @ — b as the sum of the vectors a and — b
ie. a—b=a+ (b
Referring to Figure 3.4
S0 =SP + P¢ =RQ + P
=—b+a

=a-—b

Figure 3.4

Note that the opposite diagonal of the parallelogram PR =a+b.
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Example 1. Show that |a + b| < |a| + |b|. Inwhat circumstances does
the equality hold ?

Referring to Figure 3.4, |a| is the number of units in the length
of PQ, |b| is the number of units in the length of OR, |a + J| is the
number of units in the length of PR.

Since PQR is a triangle,

PO + OR

R <
or la + b} < |a| + {b).

The equality holds when PR = PQ + OR, that is, when P, Q, R
(in that order) are collinear, i.e. @ and b are parallel and in the
same sense.

Exercises 3a

1. Sketch directed line segments to represent vectors a 3 units
north, b 2 units north-east and ¢ 4 units west. Now sketch directed
line segments to represent the following vectors: (a) é (b) —c
a+b(da+c@da—c(f)b+b(ga+b—chha+b+ec
(a—b+ck)ya—b—c

2. For the three vectors a, b, ¢ defined in Question 1, find the
values of the following quantities: (a) |b| (b) |a + ¢| (c) |—¢| (d)
la + b (e)|c + b| (f)|e — al.

3. Show graphically that for any vectors @ and b, —(b — a) =
a — b. Isit true that |b — 4] is equal to |a — b|?

4. Show that |a — b} = |la] — |b||. In what circumstances does
the equality hold?

5. Show that |a + b + ¢| < |a| + |b] + |c|, where a, b and ¢ are
any three vectors.

6. If @ and b are two vectors such that |a| = || = |a + b|, find
the angle between a and b.

7. If @ and b are two vectors such that |a| = [b| = |a — b|, find
the angle between a and b.

8. Given that for any two vectors @ and b, |a + b] = |a — b| and
also that the two vectors @ — b and @ + b are at right angles, show
that |a| = |b| and that a and b are at right angles.

9. ABCDEF is a regular hexagon. If AB BC _ represent vectors
a, b respectively, find the vectors represented by DE FE and DF.

10._A man walks from A to B: his displacement from a point O
at A, OA = a and his displacement from O at B, OB = b. What is
his displacement from 4 when at B?
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MULTIPLICATION OF A VECTOR BY A SCALAR
3.3. MULTIPLICATION OF A VECTOR BY A SCALAR

From the law of addition of vectors it follows that @ + a is a vector
in the same direction as @ and whose magnitude is twice the magni-
tude of a. We can denote it by 2a. By continued addition,
a+a+a+---tonterms, is a vector in the direction of @ whose
magnitude is equal to n times the magnitude of 2. It can be denoted
by na. We generalize this for any n, fractional or negative as follows :

Definition—The product of a scalar A and a vector a (written la)
is a vector, in the direction of a if 1 is positive and in the opposite
direction to a if A is negative, of magnitude |4| . |a].

Example. F is a force of 3 units in a direction N. 50° E., what is
meant by —4F?

—4F is a force of magnitude | —-4|.|3| = 12 units. The direction
of —4F is opposite to the direction of F, that is, N. 130° W. There-
fore, —4F is a force of 12 units in a direction N. 130° W.

It follows from the definition that if u is also a scalar u(la) =
(u)a = Mua) and the associative law of multiplication holds. Also
from definition (A + p)a = la + pa.

We can also show that A{a + b) = la + ib as follows: consider
Figure 3.5.

P a Q Q'
(A>0) (A<0)
Figure 3.5

P_Q’ = a and @2’ = b, thus PR = a + b. Extend PQ to Q' and
PR to R’ so that

PQ'=JIPQ and PR’ = PR
Hence PO =Ja .and PR = Aa+ b) ()

For any A (positive or negative) Q'R’ is parallel to QR and by similar
triangles 'R’ = AQR.

OR =1b oo (i)
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VECTOR ALGEBRA
Now PR’ = P—gz” + W Hence from (i) and (ii),
Ma + b) = Aa + Ab,

and the distributive law of algebra holds for multiplication of
vectors by a scalar.

Division of a vector by a scalar m is defined as multiplication
by 1/m.
Notes: (i) If d is a unit vector in the direction ofa,d = allal.
(i) If b is parallel to a,

b a
b lal’
THEOREM

If two vectors are represented by AOP and ub_Q', then their
resultant is represented by (4 + u)ai, R being the point which
divides PQ in the ratio u:A.

- 0
AOP oa
A+ )OR
P
R a
Figure 3.6

Referring to Figure 3.6,
OP = OR + RP (by the triangle law).
JOP = iOR + iRP.

Similarly,
400 = uOR + uRQ.
By addition
- JOP + 40Q = (1 + WOR + IRP + uRQ. )
But ARP and ufé are collinear and in opposite senses. Also since
%g =»% (given),  ARP = uRQ.
JRP and uR_Q’ are equal and opposite.
JRP + uRQ =0 ... (D)
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RESOLUTION OF A VECTOR
From (i) and (ii),
JOP + 400 = (A + wOR.
Note: If 1 = u = 1, R is the mid-point of PQ and
20R = (OP + 00Q).

Exercises 3b

1. If a = 2b, state the relationship between a and b and express A
in terms of |a| and |5|.

2. If ma + nb = 0 and a, b are neither parallel nor do their
directions coincide, state the values of m, n.

3. Sketch directed line segments to represent vectors a, 5 units
north: b, 12 units east ; and ¢, 8 units south-west. Now sketch line
segments to represent the following vectors: (i) —2b (ii) —3c
(iii) 2(c — a) (iv) —Xa + b).

4. Vis a velocity of Sm/s in a direction N.123° W. What is
meant by —6¥V?

5. For any two vectors a and b, draw a scale diagram to verify
that 3(a — b) = 3a — 3b.

6. Simplify the following expressions (a) @ + 2a (b) (a — 3a) + a
(c) 3(a + 2b) — 6(3a + b).

7. Solve the following equations for x in terms of a, b and ¢
(a)a+(x+b)—2b(b)3(2a—3x)+b-c-—b

_8 ABC i is a triangle. A particle at 4 is acted on by forces 2AB
BA and AC N. Find the resultant force on the particle.

9. ABC is a trian _gle and G is the intersection_of its medians.
Resolve a vector 64 G into components parallel to AB and AC.

10. The sides AB BC of a regular hexagon ABCDEF represent
the vectors p and ¢, respectively. Find the vectors which are
represented by the remaining sides.

3.4. RESOLUTION OF A VECTOR

We first define collinear and coplanar vectors.

Definition—Two or more vectors are said to be coplanar if they
are all parallel to the same plane.

Definition—Two or more vectors are said to be collinear if they
are all parallel to the same line.

Given a vector r and any three non-coplanar vectors, a, b and ¢,
then r can be expressed as the sum of three vectors parallel to a,
bandc. |

Let d, b, &, be unit vectors parallel to a, b, ¢, respectively. With any
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point O as origin construct a parallelepiped whose co-terminous
edges 0A, OB, OC are parallel to a, b, c, respectively (refer to
Figure 3.7).

Figure 3.7

—_—

Then there exist real numbers r,,r,,r, such that 04 = r.d,
- Fy A . e . . -=. "
OB = r,b,0C = r,é. [ris positive or negative accordingas OAisin
the same or opposite direction to 4, similarly for ry and r_].

r=OR = OA + AD + DR.
Opposite edges of a parallelepiped are equal and parallel thus:

ﬂ)’=-0_§ and —l)—I_i:ﬁ?’
04 + OB + 0C
=rd +r,b+r,é )

4

rd, ryl;, r,é are known as the component vectors and r, r,, r, as the
components of r in the three given directions. Only one such paral-
lelepiped can be constructed and the resolution is unique. Thus
equal vectors have equal components, conversely, if all three
components of two vectors are equal, the vectors are equal. Also,
from equation (i), the sum of several vectors is expressible in the
form:

Yr=) (rea+rb+rc)
= (Z rx)a + (Z ry)b + (Z r,)c,
and since the direction of a is arbitrary we have that:
The component of the resultant of a number of vectors, in any
direction is equal to the sum of the components of the individual

vectors in that direction.
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RECTANGULAR RESOLUTION OF A VECTOR
3.5. RECTANGULAR RESOLUTION OF A VECTOR

The most important case is when r = r.d + ry5 + r,¢ and the three
directions defined by 4, b and é are mutually at right angles and form
a rectangular frame of reference. The lines are labelled to form a
right-handed set of axes, that is, rotation from Ox to Oy takes a
right-handed corkscrew along Oz, similarly, a rotation from Oy to
Oz takes a right-handed corkscrew along Ox, similarly for Oy (refer
to Figure 3.8). .

In this case, the unit vectors d, b and ¢é are known as i, Jj,and k
[without circumflexes] and

r=rJd+rj+rk

rxs Iy and r, are now referred to as the rectangular components, or
simply, components if there is no fear of a misunderstanding.

1
{
s k
! R,
T r r
]
B
0 — — — e - — - —‘y
s @ J 8
7
A [2)
X
Figure 3.8
If « is the angle OR makes with OA,
0OA = ORcos o
or r, =rcosa (wherer = OR).
Similarly, ry =rcosf
r, = rcosy
Now OR?> = OB? + BR? (refer to Figure 3.8)

= OB? + BD? + DR?
= OB? + 04% + 0C?
or rr=ri+rl+r

From which we see that the modulus of a vector r with rectangular
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components ry, r,, 7, is [ = /(r2 + r; +r7). (Note the positive
square root.) '
It follows from the associative and distributive laws that

(h a+ b =(a, +byi + (a, + b)j+ (a; + b)k

(1D ma = mad + ma,j + ma.k (mascalar). -

Example 1. If a =3i + 4 — 12k,b =i + 12k, ¢ = i—j+ k. Find
lal, |Bl. \c|, |a + bl and ja + b + .

From our equation |¢f| = /(r2 + rZ + 1),

la) = J[3% + 42 + (—120°] = 13
bl = /(17 + 0% + 12%) = 1204
lf = JI2 + (=1 + 1%) =173
la + b| = |4i + 4] = J(# + 4% + 0%) = 566

|a+b+c|=|5i+3j+k|=,/(52+32+12§=5-92.

Vectors and the vector algebra we are developing are eminently
suitable for work in 3-dimensions (and can be generalized to n-
dimensions). However, many of the examples used in this book will
be 2-dimensional applications, the r, component being suppressed
thus:

r=rJd+r,j
and |1 = J/r2 +rd).

Example 2. P and Q are the points (1,2) and (3,7), respectively
express PQ in terms of unit vectors i and j which are parallel to Ox and
Oy respectively.

Deduce the general result when P and Q are the points (x,, y1) and
(x2, y2)

Refer to Figure 3.9 where PR and RQ are drawn parallel to Ox and
Oy respectively.

PQ = PR + RQ.

The length of PR is 3 — 1 = 2 units and it is parallel to and in the
same sense as Ox, therefore, PR = 2i.
Similarly, RQ = (7 — 2)j = 5j. Therefore

PO =2+ 5
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In general, PO = (x5 — x,)i + (y2 — y)j.
y
8| Q (3,7)
6\.
‘.—
r  Pim R
i 1 1
0 1 2 3 x
Figure 3.9

Exercises 3c
1. Express the following vectors in terms of 7 and j, unit vectors,
due east and due north, respectively.

(a) 10,/2 units in a direction north-east.

(b) 10\/2 units in a direction south-west.

(¢) 5 units in a direction N. 60° W.

(d) 8,/2 units in a direction N. 135° E

(¢) 20 units in a direction N. 120° W.

2. Giventhatr, =2i + j,r, =i + j,find(a)ry, + ry:(b)2r, — r,:
(c) (4r, + 2r,)/3. :

3 Mfa=i+j—2k,b=i+kc=2—j+ 3k (find(a)a+ b —
Je:b)la+ b+ cl:(c)a—2b+ c.(d)2a + b + 2.

4. Ifr = 2i — j + 2k, find |r} and the cosines of the angles between
rand i, jand k, respectively (these are known as the direction cosines
of r). Write down, in terms of , j and k, a unit vector in the direction
of r.

5. If i, j and k are unit vectors parallel to rectangular axes Ox, Oy
and Oz, respectively, find a vector of magnitude 6 units equally
inclined to the three axes.

6 leen four pomts A(2,3);B(5,4);C(6, —3)and D(~5,2), express
AB BC CD and DA in terms of i and J. Hence verify that AB +
BC + CD = AD.

7. Given the points A(0, 4) B(4 10), C(7 8), find AB BC CA in
terms of i and j. Hence find |AB| |BC| and |CA| and prove that ABC
is a right-angle triangle.

8. Find the resultant of the following displacements: 8 m due
north, 6 m north-west, 7m due west and 10m N. 150° W.; both
analytically (by expressing each displacement in terms of  and j) and
graphically.
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9. Ox Oy, Oz are a right-handed set of mutually perpendicular
axes. OP has a length of 8 unltignd makes an angle of ¢ with its pro-
jection OQ on the xOy plane. 0Q makes an angle_@) with Ox. Express
a velocny of 8 m/s in a direction parallel to OP in terms of unit
vectors i, j, k parallel to Ox, Oy, and Oz, respectively.

10. Given three pomts 1n3 dimensional space 4(2, 3,4); B(3, 1, 7),
C(4 3,8), express AB BC CA in terms of i i, j, k. Hence find |AB|
|BC| and ICAI and prove that the triangle ABC is right angled.

3.6. DIFFERENTIATION AND INTEGRATION OF A
VECTOR

A vector can change in direction and/or magnitude. The changes
can be arbitrary or be a function of one or more variables. We shall
deal only with cases of one variable. First let us consider three
typical examples of variable vectors.

(a) If a particle is moving in a circle of radius r with constant
angular speed w rad/s and v represents its velocity at any instant,
then |v)] = row and is constant. However, the direction of » is always
changing, thus v is a variable vector. -

(b) A particle P is moving along a straight line with velocity v
whose magnitude at any time ¢ is k. In this case the direction of v is
constant but its magnitude is always changing therefore v is a
variable vector.

(¢) A particte P moving around a fixed circle is acted on by a
force F, which is always directed towards a fixed point O outside the
circle. The magnitude of F being proportional to the distance OP.
In this case the vector F varies in both magnitude and direction.

We now consider the general case of the differentiation of a
vector r, whose magnitude and direction both depend on the value
of a scalar variable ¢.

Suppose r is a continuous and single valued function of ¢, say
r(t). For each value of t there exists only one value of r and as ¢
varies so does r. Consider two values ¢, t + Jt, to these correspond
two values r and r + or [or ¥(t + Ot)], we now define

dr — or
dr  anb ot

We can depict this pictorially (refer to Figure 3.10).
Let O be a fixed point and let opP represent r(t) [r is known as the
position vector of the point P with respect to O]. As t varies #(t)
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varies, and P moves along some curve. If r changes to t + 6t, r
changes tor + dr and P moves to the point Q (r + Jr is the position
vector of Q). PQ represents Sr. :

Q

r+ér

0 ri(t)

Figure 3.10

As 6t - 0, Q — P, and the chord PQ tends to coincide with the
tangent at P. Therefore
dr I or
— = |lim —
dt  s-o0dt
is a vector in the direction of the tangent to the curve traced out by P.
dr/dt is, in general, a function of t and thus has a derivative which we
denote by d*r/d¢? and call the second derivative of r. Similarly, the
derivative of this d3r/dt? is the third derivative of r.
Two cases of special importance are:
(a) Ifin place of t we use the parameter s which measures distance
along the curve from some fixed point. Then

dr = lim Q’

ds  ss-00ds
and the modulus of this is

chord PQ

ss—o arc PQ

So that in this case dr/ds is the unit tangent to the curve at P.

(b) When t denotes time and r is the position vector of P relative
to some fixed origin O, then Jr is the displacement of the point P
during an interval of time dt, and limg,_ o or/t is the velocity of P
which is along the curve. Hence v = dr/dr. Similarly the accelera-
tion of the particle is

dv d%

f=a~ar
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In general, the normal differentiation formulae apply, that is, if
vectors 4 and B and scalar ¢ are differentiable functions of ¢.

d d4 dB
(@ d+B=—1-++

d = do da
(b) (@) =4+ oo

(c) If C is a constant vector (constant in both magnitude and
direction), dC/dt = 0.

Example 1. A particle P moves along a curve whose parametric
equations are x = k{1 + cost):y = k(t + sin t) where t is time. Find
the magnitudes of its velocity and acceleration at any time t.

The position vector OP of the particle is given by

r=xi+y
= k(1 + cos t)i + k(t + sin t)j.
d
Velocity o= d—; — —ksinti + k(1 + cos t)j )

o] = /(—ksint)? + k%1 + cos 1)
= \/(kz sint 4+ k! + 2k*cost + k% cos®t)
=k /(2 + 2cost)

= k./4 cos? (t/2)

= 2k cos (t/2).
Acceleration f = dv/dt = —k cos ti — k sin tj [from (i)].
[fl = /(=kcost)?® + (—ksint)?
=k

The indefinite integral, with respect to a scalar variable ¢, of a vector
g is defined as follows:
G = fg dt,

where G is such that dG/dt = g.
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The integral G is indefinite because any constant vector C can be
added to it.

Example 2. Find the indefinite integral with respect to 0 of the vector
2 = 3 cos Ba + 4sin 0b, where a and b are constant vectors.

fgd0=f(3cos0a+4sin0b)d0

= 3sinfa — 4 cos 6b + C.

The definite integral of a vector g with respect to a scalar variable ¢
is defined as follows:

Let g(t) be a vector function of the scalar variable t and suppose g(t)
is finite and continuous in the range a to b. Let the range ato b be
sub-divided into n sub-ranges dt,, dt,,...,0t, and let r; be some
value in the first sub-range, t, be some value in the second sub-range,
..., t, be some value in the nth sub-range, and let

S = g(t,)ot, + g(ty)dt, + ... + g(t,) dt,

b
=Y glr)or.

Let n — oo so that the width of each sub-range tends to zero. It can
be shown that

b
lim S = lim ) g(t) 5t = G(b) — G(a).

n—+oo n— o0 a

Therefore we define

b b
f g(t)dt = lim ) g(t) 6t = G(b) — Gla)

a

where G is the indefinite integral of g.

Example 3. Find the definite integral with respect to t of the vector
g(t) = t% — (3t + 1)j + 3k over the ranget = Otot = 3.

3 3
J g dt = f [t — (3t + 1)j + 3k]dt
0 1]

£3 12 3
=|=i—{3=~ j + 3tk
|:3l (32+t)]+ ]0

= [9i — 16Lj + 9k] — [0]
= 9i — 164 + k.
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In addition, we can define the following definite integral associ-
ated with vectors:

f "$dr=1im Y ¢dr ($ascalar variable)
re or—0 r

3.7. DIFFERENTIATION OF A UNIT VECTOR

If 4 is a unit vector which varies in direction, to find the magnitude
and direction of dd/dt where ¢ is a scalar variable. Let 4 make an
angle 0 with an initial line Ox. Referring to Figure 3.11, when t

Figure 3.11

increases by dt, P moves to Q where / POQ = 6. Since d is a unit
vector and only varies in direction.
00 =1|d + éd =1 = |4 =OP
/[ OQP = / OPQ.

In the limit as Q — P, 660 — O so that / OQP = / OPQ — n/2, and
0d [QP in Figure 3.11] is perpendicular to 4. Division by a scalar
does not alter the line of action of a vector.

a

dd . ) .
@ 1s perpendicular to d.

If 0 — P, then chord PQ — arc PQ,i.e.|dd =1 x &0.

@' = lim @
dr o-p| Ot
= lim ﬁ)
Q-p Ot
ddé| do
dr|” dr
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Therefore dd/dr is a vector perpendicular to @ in the direction of 8
increasing and equal in magnitude to do/dr.

Exercises 3d

1. Given that a is a constant vector, find the derivatives of the
following expressions with respect to t: (a) t2a (b) a/t (c) Sa (d) a/7 (e)
3t%a + Sa.

2.If A =3%+ (1 — 0)j, B=ti — (t* + ¢3)j and C = 3i + 5tj,
find 4 + B + C, d4/dt, dB/dt and dC/dt and hence verify that
d(4 + B + C)/dt = d4/dt + dB/dt + dC/dt.

3. Find a value of r which satisfies the differential equation
d2r/dt* = a (a constant vector).

4. Given that d?r/dt®> = at + b and that r = dr/dt = 0 when
t =0, findr.

5. If r = acos® 0i + asin® 6], find |dr/dd|.

6. A particle moves along a curve whose parametric equations
are x = 2sin 5t, y = 3 cos 5t, where t is time. Find, in terms of i and
Jj (unit vectors parallel to Ox and Oy respectively),”

(a) its velocity and acceleration at any time t,

(b) the magnitude of its velocity and acceleration attimet = n/2.

7. Find the definite integral with respect to 8 of the vector
2(0) = cos 20i — sin 20j over the range ~0 = 0to § = n/4.

8. Verify that g(6) = cos i — sin §j is a unit vector and find
dg/df. By means of a diagram verify that g is perpendicular to
dg/dé.

9. A particle moves along a curve with velocity v = —2ti + 2j,
where t is time. Its position vector with respect to the origin O is r.
If at time t = 0, r = i, show that at time ¢,|r] = 1 + ¢2.

As remarked earlier, the ways in which we combine vectors
depend on the ways in which they combiné in practice. Two kinds of
product arise one of which is a scalar and the other a vector.

3.8. SCALAR (OR DOT) PRODUCT

Definition—The scalar product of two vectors a and b is the scalar
quantity ab cos 6, where a and b are the moduli of a and b and 8 is
the angle between them. The product is written as a.b and is
sometimes referred to as the dot product.

a.b = abcosé.

One use of this definition is seen when we consider the work done
by a force F whose point of application moves a distance r in a
direction making an angle 0 with the line of action of F.
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Work done = (magnitude of force in the direction of motion)
x (distance moved)

= Fcos Or
Work done = Frcos 0

Using a vector notation because both force and displacement are
vectors

F.r = Frcos 8 = work done.

From the definition:
b.a=bacos8 =abcosl =a.b,

that is, scalar multiplication is commutative.
We note two special cases:
{a) If a.b = 0 then either a = 0, 5 =0 or cos 0 = 0 [0 = 90°].
Conversely, if aand b are perpendicular, thencos § = Oanda.b = 0.
(b) If the vectors are collinear (refer to Section 3.4), cos 8 = +1
and a. b = +ab according as they are in the same or opposite sense.
In the case of the unit vectors i,j, k, since they are mutually
perpendicular,

i.j=0=j.i
j k=0=k.j ..(1)
k.i=0=i.k

and ii=j.j=k. k=1

For any vector a, a .a = |a|> which is often written a?.

Another interpretation of the scalar product is
a.hb=abcos@ =a x (bcos0)
= a x {projected length of b on a)

= a x (component of b in the direction a).

Now the component of a sum of vectors in any direction is equal
to the sum of the components of the individual vectors in that direc-
tion. Hence

a.(b + ¢) = a x (component of b + ¢ in direction of a)
= a X (component of #) + a x (component of ¢)
a.b+c)=a.b+a.c
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Also, it is evident from the definitions of a . b and Aa that
Ma.b)=(la).b = a.(1b)

Thus scalar multiplication is distributive with respect to addition
and commutative with respect to multiplication by a scalar, so that
brackets can be removed and inserted as in ordinary algebra.

Let

a=aji+a,j+ak and b=>bi+bj+ bk
Then
a.b=(ai+a,j+ ak).(bi+ b,j+ bk)
=abi.i+abi j+abik
+abj.i+abyj.j+ab.j k
+abk.i+abk.j+ab k. k
Therefore, using the set of equations (i)
a.b=ab,+ab,+ ab, RN 1)
Example 1. A force F = —2i + 3j units has its point of application
moved from the point A(1, 3) to the point B(5,7), find the work done.
By definition of the scalar product
work done = F. 4B
AB=(5—Di+(1—3)=4i +4
work done = (—2i + 3j).(4i + 4))
=(—2) x 4 + 3 x 4 (by equation ii)
= 4 units.
The positive sign indicates that the work is done by the force.

Example 2. Find the resolved part of the vector a = 2i + 3j in the
direction of b = —5i — j.

If 6 is the angle between a and b, then acos 0 is the required
projection. By definition @. b = abcos 6.
acos0 = a. b/|b|
the projection ofaon b is a. b where b is the unit vector in the
direction of . Now
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b = (=57 + (=17 = /26
b= (—5i —j)/26
the projection of a on b = (2i + 3j).(—5i — j)/\/26

= —13/,/26.

The normal differentiation formula for a product applies, that is,
if 4 and B are differentiable functions of ¢,

d dA dB

Example 3. Given the two vectors A = t% + 2j — thk and B =
4% + tj + (t — Dk, verify the relation (iii) given above.
A.B=(t%+2j — th). 4% + tj + (t — )k}
=4* + 2t — 2+t
=4r* — 1 + 3t

d
—(A4.B)=16t> — 2t + 3 ....(a)
dt

d d ,

o i g — i

dt(A) dt(tl+2_] th) = 2ti — k

d d._ . . L
E(B)—a{4tl+t]+(t—l)k}—8tt+]+k

dA4 dB . 2: .
E.B+A.a—-(2tl—k).{4tl+t]+(t—l)k}

+(t2i+2j—tk).(8ti+j+k)
=83 —t+14+83+2—1¢
= 1613 — 2t + 3. ....(b)

Comparing (a) and (b) it can be seen that the result is verified.

We shall also have occasion to use the following integral :
J g.dr = alirr}) Y g.0r (g a vector variable)
but the method of evaluation will not be pursued here.
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Exercises 3e

1. Given that r; =2i+j and r, =i — 3j, find (a) r,.r, (b)
ry . (ry —r) () (10r, + ry). r,.

2 Ifa=i+j—-2k, b=i+ k and ¢ = 2i —j + 3k, evaluate
(@a.b®)2a.(b + 3¢)(c)(5a — 37b + 15¢). c.

3. Given that AB =i — 2j + 3k and AC = 3i — 4k, find the
length of the projection of AB on AC and of the projection of AC
on AB.

4. Show that the vectors a cos 6i + b sin 0j and b sin 6i — a cos 6j
are perpendicular. . .

5. Three points A, B, C are such that AB = 2i + j, BC =i + 3j,
find the angle ABC. .

6. Three points 4, B, C are such that AB = 2i — 2j + k and
BC = —4i — 8 + k. Find the angle ABC.

7. fa =i+ uj + u*kand b = sin ui + cos uj, calculate d(a. b)/du.

8. If A=3t%i+(1—1t)j and B=ti — (t* + t3)j, find 4.B,
dA/dt, dB/dt and hence verify that,

d(4.B) d4 dB
dt dt'B+A' dt”
9. If A =ti + 3t%, B=5ti — 2%, C=(1 + t)}i + (1 — t)j and
¢ = A. B, find ¢, dg/dt, dC/dt and verify that

dpO) _dg . dC
& al T a

10. Expand the following and simplify where possible (a)
a.(@a+b+c)b)a+b).(a— b)(c)(a+ b7

11. Ifa.b = a. c and a # 0, what can be said about the relation
between b and ¢?

12. Prove, using a vector method, that the perpendicular bisectors
of the sides of a triangle meet in a point.

13. Given the three vectors a = 2i + 3j + 5k, b = 3i — j + 2k
ande =i+ j+ k,find (a. b)c — (a.c)b in terms of i, j, k.

14. aand b are any two nonzero vectors: (a) if [a| = |b|, show that
(a + b)and(a — b)areatright angles. (b)ifaand bare perpendicular
show that |a — b = |a + b).

15. If ais a vector of constant magnitude, show by differentiating
a . a that da/dt is perpendicular to a.
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3.9. VECTOR (OR CROSS) PRODUCT*

Definition—The vector product of two vectors a and b, writtena x b,
is the vector ab sin 0, where # is a unit vector perpendicular to the
plane of @ and b, such that a, b, i (in that order) form a right-handed
set.

From the definition, @ x b = —b x a, that is, the vector product
is not commutative.

|a@ x b = ab sin 8 from which it follows that, if a x b = 0, either
la) = 0,|h] = Oorsin § = 0. Ifsin @ = 0,0 = Oor rand the vectorsa
and b are collinear and have the same or opposite sense according
as § = 0 or © respectively. Conversely, if @ and b are collinear,
a x b = 0. In particular,a x a = 0.

In the special case of the unit vectors i, j, k since they form a right-
handed system and are mutually at right angles

ixj=k=—jxi

Jxk=i =—-kxj .
L. . ..(1)
kxi=j=—-ixk
and ixi=0=jxj=kxk

From the definition of @ x b it follows that
Ma x b) = Aabsin Oit = (la) x b = a x (1b).
tAlso it can be shown that

axbtc)=axb+axec

Thus the distributive law holds for vector products and the vector
products of the sums of two sets of vectors can be expanded, as in
ordinary algebra, provided the order of the factors is maintained.

Example. Simplify (a + b) x (a + b + ¢).

(a+bh)x@a+b+c)=axa@a+b+e)+bx(a+b+eoc
=axat+axb+axc

+bhbxa+bxb+bxc

* This section may be omitted during the first reading of Part I.
+ The reader is referred to any standard introductory textbook on vectors.
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By definition,
axa=0=>bxb
and axbt+bxa=axb—axb=20

@+b)x@a+b+c)=axc+bxec
Let a=aj+ayj+ak and b=>bd+b,j+ bk

then axb=(ad+ a,j+ ak) x (bi+ b,j+ bk)
=abdxi+abixj+abixk
+abjxi+abjxj+ahbjxk
+ abk x i+ abk xj+ abk x k.
Using the set of equations (i),
axb=04+abk — ab,j
—abk + 0+ ab,i
+ a,bj — abyi + 0
= (ab, — a.b))i — (ab, — a,b.)j + (ab, — a,by)k,
which may be written in determinant form as
i j k
axb=\a, a, a,
b, b, b,

Note that by the laws governing the manipulation of determinants
we have,

i j k
axb=~—~\b, b, b;|=—-bxa
a, a, a,

The normal differentiation formula for a product applies, that is,
if 4 and B are differentiable functions of ¢,
d dA4 dB
E(A XB)—EXB'FA XH?

but the order of the terms in each product must be preserved.
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3.10. MOMENTS*

When the line of action of a vector is fixed as well as its magnitude
and direction, it is called a localized vector. Examples of localized
vectors are a force acting along a given line or the momentum of
a particle.

Definition—The moment of a localized vector v about a point O
is the vector quantity

r Xv

where r is the position vector (refer to Section 3.6) relative to O
of any point P on the line of action of v (refer to Figure 3.12).

Figure 3.12

Thus the moment M (say) is a vector perpendicular to the plane
containing v and O, such that r, v and M form a right-handed set.
Its magnitude is vr sin 8 or vp, where p is the perpendicular distance
from O to the line of action of ». Hence the moment of v about O
is unaffected by the position of P on its line of action.

Example 1. The line of action of a force F acts through a point

P whose position vector is i — 2f + k. If F=2i — 3j + 4k, find

the moment of F about the point Q whose position vector is

2i+j+k

The position vector of P relative to Q = @5
={(—-2+h—-Qi+j+k
=—i—3

* This section may be omitted during the first reading of Part L
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the moment of Fabout Q = ﬁ x F

= (=i — 3j) x (20 — 3j + 4k)

=| i j k
-1 =30
2 -3 4

= —12i + 4 + %

As we shall see later in Chapter 16, the moment of a force and
the moment of the momentum of a particle are useful quantities
in determining the rotational motion of a rigid body.

Definition—The moment of a localized vector v about an axis
(or line) I is the component in the direction of | of the moment of v
about any point on [, i.e., referring to Figure 3.13a, the moment of v
about lis I. (r x v), where ! is a unit vector parallel to [

Figure 3.13

The moment of v about I is independent of the choice of the
point D. For if O’ is any other point on [ (refer to Figure 3.13b), then

OP =00 + 0P
ie. ¥o=r—A (where A is some scalar)
I x v) = i.(r x v) — i.(1 x 0.

But /. (li x v) = 0 being the scalar product of two perpendicular
vectors,

i.(r’ X ) =i.(r X V).
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Example 2. Using the data of Example 1 above, find the moment of F
about a line | through P parallel to the vector 3i — 4j.

A unit vector in direction of I, f = 3i — %j
the moment of F about [ = . (@ﬁ x F)
=3 —%4j).(—12i + 4 + 9%k)

=-¥-%¥+0
— 52
—52

The moment of F about [ is 10% units.

In this book we shall be particularly concerned in finding the
moments of vectors about lines to which they are perpendicular.
Referring to Figure 3.14, where v and Fare at right angles, let O be

Figure 3.14

the point on I nearest to the line of action of ». Thenris perpendicular
to both /and to » and hence r x v is paraliel to .

I.(r x v) = |r x o|}d] cos0°
=|r x v
:pl]

1.e. the moment of v about the perpendicular axis | is the magnitude
of v multiplied by its perpendicular distance from /.

Example 3. A table has a square top ABCD of side 4 m. If a vertical
force of 10N acts downwards at D, find its moment (a) about the
line AB, (b) about AC.

Referring to Figure 3.15,
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the moment of the force about AB
= 10 x its perpendicular distance from AB
=10 x AD
=40 N m,
the moment of the force about AC = 10 x OD
=10 x 2/2

=20/2Nm.

Figure 3.15

Exercises 3f*

1. Expand and simplify the following expressions: (a)a x (a + b)
(B)(@a+ b) x alc)(a+ b) x (a+ b){d)(a+ b) x (a—b). .

2. Given that r, =2i +j, r, =i—j, find (@) r, x ry (b)
ry X (ry x ry).

3. a, b and c are, respectively, vectors of 4 units north, 3 units west,
and 8 units N.150° E., describe carefully the following vectors
()axbb)axc(c)b x c

4. Ifaand barenot zeroanda x x = b x x, what is the relation-
ship between them?

5. Giventhata = 5i — j + 2k, b =i — 2j + 3k,

(a) find @ x b and verify that a.(a x ) =0 and b.(a x b) = 0.

(b) If,inaddition,c = i + j + k,findb x candhencea x (b x ¢).

6. Using the data of Question 5, find (a. ¢)b — (a. b)c and verify
that it equals @ x (b x ¢).

7. The momentum of a particle is defined as mp where mis its mass,
v its velocity. A particle of mass 2kg is moving with velocity
2i + j — km/s. Find the moment of the momentum of the particle
about O when the particleisata point Psuchthat OP =i —j — 2km.

8. ABCisatrianglein which / ACB = 30degreesand AC = 4m.
Find the perpendicular distance of A from BC. If a force of 6 N
acts along BC, find its moment about A.

* These exercises may be omitted during the first reading of Part L
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9. The line of action of a vector v = 24 + b passes through a
point whose position vector is 3a — b. Find the moment of »
about the origin and about the point @ + &.

10. If @ = 6i — 3j + 2k, find 4. The line of action of a vector
v = —i + 2j — 3k passes through the point with position vector
—i — 4j + k. Find the moment of v about an axis through the
origin parallel to a.

11. ABCD, A'B'C'D' are the opposite faces of a rectangular block
in which AB = 2a, BC = 3aand CC’' = 4a. A force of magnitude P
acts along the edge AD. Find the moment of this force about
(a) BC (b) BB’ (c) A'B’ and (d) AB.

3.11. POSITION VECTORS AND GEOMETRICAL
APPLICATIONS*

Given a point O as origin, then a point P is uniquely specified by
the vector OP, known as the position vector of P with respect to O.
We shall use a, b, . . . for the position vectors of the points 4, B, .. ..

Example 1. The point R divides the straight line joining the points
A and B in the ratio m:n. If A and B have position vectors a and b
with respect to an origin O, find the position vector of R with respect
to O.

A R 8

a r b

Figure 3.16

Referring to Figure 3.16, since ARB is a straight line, AR and RB
are collinear. Also

AR

RE = m/n
or nAR = mRB
nAR = mRB
or nir —a) =mb — r)

r_na+mb
m+n

Whence (m+n #0).

* This section may be omitted during the first reading of Part I.
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The result is true whether the ratio m/n is positive or negative.
In the case of m/n negative, the point R is outside the segment AB.
Note that if R is the mid-point of AB, m = n and r = (a + b)/2.

Example 2. Show that the medians AD, BE, CF, of a triangle ABC
have a common point of intersection, which divides each median in
the ratio 2:1.

Let the position vectors of A, B, C be a, b and ¢, respectively.
Since D, E, F are mid-points of the sides BC, CA, AB, respectively,
their position vectors are D, 3(b + ¢): E, ¥c + a): F, 3(a + b) (vefer
to Figure 3.17).

Figure 3.17

Let G be the point which divides AD in the ratio 2:1. Then,
by the result of Example 1, the position vector of G is given by

_1><a+2x’_‘;(bxc)
B 1+2

=Ha+b+o),

and the symmetry of this result shows that G lies on BE and CF and
divides them in the ratio 2:1.

The position of a point A(x, y, z) can be specified by the position
vector OA = a = xi + yj + zk where i, j, k are unit vectors parallel
to Ox, Oy and Oz respectively.

Exercises 3g*

1. The position vectors of the points 4 and B are respectively
a =2i+.3jand b = i + 5j. Find the position vector of the point R
which divides AB in the ratio 3: —2.

2. P, Q have position vectors a, b respectively. Find the position
vector of R, the point which divides PQ internally in the ratio 3:2.

* These exercises may be omitted during the first reading of Part 1.
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Show that R, S(2a), T{(96 — 14a)/5} are collinear and find the ratio
in which R divides ST. Write down an expression for the length ST.

3. ABCD is a parallelogram and a, b, ¢ are the position vectors of
A, B, C. What is the position vector of D?

4. A, B, C, D are any four points in three-dimensional space and
P, Q, R, S are the mid-points of AB, BC, CD, DA respectively. Show
that PORS is a parallelogram. (Use a vector method.)

5. Given that AD, BE, CF are the medians of a triangle ABC
show that (a) FE = IBC and (b) AD + BE + CF = 0.

6. If a, b are the position vectors of the points 4, B respectively,
find the position vector of a point C in AB produced, such that
AC = 4BC and the position vector of a point D in BA produced,
such that BD = 3BA.

7. A, B, C, D, E, F are any six points in three-dimensional space.
P is the point of intersection of the medians of the triangle ABC,
Q is the point of intersection of the medians of the triangle ABD,
similarly, R of triangle DEF, and S of triangle CEF. Show that
P, Q, R, S are the vertices of a parallelogram (refer to Example 2,
Section 3.11).

8. a, b, ¢ are the position vectors of the three points A, B, C.
A’ is the mid-point of BC and G divides A4’ internally in the ratio
2:1. Find the position vector of G. If d is the position vector of
another point D, non-coplanar with the points 4, B and C, and H
divides DG internally in the ratio 3:1, find the position vector of H.

3.12. THE VECTOR EQUATION OF A STRAIGHT LINE*

A straight line can be uniquely specified in a number of ways, for
example, by (a) its direction and the position of a point on it, and
(b) the position of two points on it.

The equation of the straight line is obtained by expressing the
position vector r of a general point P on the locus in terms of the
given conditions. To find the vector equation of a straight line
through a given point A4 (a) and paralle! to a given direction b.

Figure 3.18

* This section may be omitted during a first reading of Part I.

48
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Let P(r) be any point on the line, then AP is parallel to b (refer to
Figure 3.18) and is therefore equal to th, where t varies according to
the position of P. Now

rza”=0_A’+Zi5
r=a-+th

which is the required equation.
For the particular case of a straight line through the origin,
a = 0 and we have

r = tb.

(Note: t is not equal to AP unless b is a unit vector.)

Example 1. To find the vector equation of a straight line through two
given points, A(a) and B(b).

A 8

Figure 3.19

We note that AB = b — a (refer to Figure 3.19), so that we have
a straight line through A(a) parallel to b — a. Its equation is
therefore:

r=a+ b — a
or r=(—1ta+th
Example 2. The vector equations of two coplanar linesarer = a + tb

and r = (2a + b) + s(a — b). (a and b being given vectors.) Find the
position vector of their point of intersection.

Suppose the lines meet at P(r,). Since P lies on both lines,
r,=a+th and r,=(2a+ b+ sla—b)
a+th =(2a+ b) + sta—b)

For this to be true the coefficients of @ and b must be equal.
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1=2+s
and t=1-—s.
From these two equations s = —1 and t =2, so that, from
r, = a + tb, the position vector of P is a + 2b.
Check. From r,= (2a + b) + sa — b),
r,=Q2a+ b —(a—>b
=a+2b

as before.
Exercises 3h*

1. Three points A, B, C, have position vectors (2a + b);(a + 3b);
(4a — 3b) respectively. Write down the vector equation of the
line AB and hence verify that A, B, C are collinear.

2. Find the position vector of the point of intersection of the two
lines ¥ = 3a + t(4a + 3b) and r = (a + 3b) + s(2a — 3b).

3. The equation of a straight line through the origin is r = zb.
If (x,y,z) are the coordinates of the point P(r) and b =
(byi + byj + bsk); i, j, k being unit vectors parallel to Ox, Oy, Oz,
respectively, deduce that,

x_JY_Z
bl_bZ_b3

4. P, Q, R are the points with position vectors i + 2j + k,
2j + 2k, 3i — j + k respectively. Find vector equations for the
following lines: (a) through the origin parallel to PQ ; (b) through R
parallel to PQ; (c) through Q and R.

5. Show that the lines r = 2i + 2j — 4k + (i + 3f — 3k) and
r=1i+j+ k + s(i + 2j — 4k)intersect and find the position vector
of their point of intersection.

6. Ifthelinesr =i+ 2+ k+ i —2j + k)and r = 2i + s(i +
pj + 2k) intersect, find p and the position vector of their point of
intersection.

7. Find the angle between the lines r = (1 — 3t)i + (1 — 4t)j and
r=(1— 5s)i + 12sj.

8. If in Question 3, the equation of the line had been r = a + tb
and the point A(a) had coordinates (a, a,, az), deduce a similar set
of results to those given in Question 3.

9. The three lines r = (3a + b) + ta: r = (a + 4b) + s(a — 3b):

=1

* These exercises may be omitted during a first reading of Part 1.
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r=(—a + 4b) + u(3b — 2a) lie in the same plane. Find the
position vectors of their points of intersection.

EXERCISES 3

1. The sides Aﬁ AC of the triangle ABC are represented by p and
q respectively. D, E and _F are the mid-points of BC, CA, AB
respectively. Express DE EF FD in terms of pand q.

2. ABCD is a quadrllaterdl L is the mid-point of AB, N is the
m_iq-poiit_’ of CD, and M is the mid-point of LN. Prove that
MA + MB + MC + MD = 0.

3. Three points A, B and C have position vectors a = —i + 5j,
b = 2i + 4j, ¢ = 2j with respect to a given origin. Show that ABC
is a right-angled triangle.

4. Write down the vector algebra of the following statements:

(a) The vector a is parallel to the vector b in the same sense and
of twice its magnitude.

(b) The vector a is equal and opposite to the vector b.

(c) The vector a is parallel to the vector b.

(d) The resultant of F, and F, is parallel to a.

{e) x and y are perpendicular.

(f) The resultant of P and Q is equal and opposite to the resultant
of Rand §.

(g) x,p,z (in that order) form a right-handed set and are mutually
perpendicular.

(h) a, b, ¢ are mutually perpendicular.

5. Depict on the same diagram the forces F; —5F: F/3; —1-5F
and a force of magnitude 2F at right angles to F (two cases). Is it
possible to depict 1/F?

6. The resultant of two forces 2P and 2Q is equal and opposite
to the resultant of @, another force R and a force equal and opposite
to P. Express P in terms of Q and R.

7. For what values of A are the vectors 34i — 4j — 3k and
24 + 7j + k perpendicular?

8. Find a unit vector in the direction of i — 2j and hence find the
component of the vector 3i + 2j in that direction.

9. Find the work done when the point of application of the force
3i + 2j moves in a straight line from the point (2, —1) to the point
(6, 4).

10. ABCDEF is a regular hexagon Show that the resultant of
the five forces represented by AB AC AD AE and AF is the force

represented by 640 where O is the centre of the hexagon.
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11. Form the vector product of both sides of the equation
a + b = ¢ with a. Hence prove the sine rule for a triangle. Use
scalar products to obtain the cosine rule.

12. Given that u =i — 2j + 3k and v = 4i — 3j — k. Find (a)
unit vectors along u, v and u + v (b) u.v (c) the component of win the
direction of v (d) the angle between # and v.

13. Given the three points 4, B, C with position vectors (3a + 2b):
(—a + 6b), (—2a + 7b) respectively, write down the vector equa-
tion of the line AC. Hence show that A, B, C are collinear and find
the ratio AB:BC.

14. Using vector methods, find the angle between two diagonals
of a cube.

15. A particle moves so that its displacement r at time t is r =
(4cost + 3sint + 2)i + 3cost — 4sint — 1)j. If v and f are its
velocity and acceleration, respectively, show that Jo| = 5 = | f].

16. Given two vectors @ = 2i + 3j and b = 4i — 3j, find |a| and
|6]. Hence express a . bin terms of cos 8 where 0 is the angle between
a and b. Also evaluate a . b using components and hence find 6.

17. Two vectors aand b are such that their resultant is perpendicu-
lar to b. If the resultant of @ and 2b is petpendicular to a, find a
relation between |a| and {5|.

18. ABCD is a quadrilateral and X and Y are the mid-points of its
diagonals AC and BD respectively, prove that AB + AD + CB +
CD = 4XY.

19. A particle moves.along a curve whose parametric equations
are x = 10 + 7cost, y = 8 + 7sint, where ¢ is time. Find the
magnitudes of its velocity and acceleration at any time ¢.

20. The position of a projectile referred to horizontal and vertical
axes through the point of projection is given by x = 8¢, y = 40t —
16¢2 where ¢ is time. Find at what time the projectile is moving (q)
horizontally (» has a zero component in a vertical direction); (b) at
an angle of 45 degrees to the horizon (vertical component equals the
horizontal component).

21. A particle moves so that its position vector r at time t is
(acos® )i + (asin®t)j (i.e. along a curve called the Astroid). Find
its velocity v at time t and show that |v] has a maximum value 3a/2
when t = n/4 or 3n/4.

22. dand b are unit vectors in the x-y plane, they make angles «,
respectively, with Ox. Express & and b in terms of component
vectors parallel to Ox and Oy and hence prove the formulae:

cos(x — ff) = cosacos f + sinasin f§
cos (o + ff) = cosacos f — sinasin
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23. The line of action of P =i — 2j passes through the point
whose position vector is —j + k, where 7, j and k are unit vectors
parallel to rectangular axes Ox, Oy, Oz. Find (a) the moment of P
about O (b) the moment of P about the point i + k : (c) the moment
of P about the y-axis.

24. ABCDEF is a regular hexagon of side a. Forces of magnitude
1,2, 3,4 and 2 units act along AB, BC, DC, DE and DB respectively.
Find the magnitude of the sum of their moments about the centre of
the hexagon.

25. A vector of magnitude 12 units acts along the liner = i — j +
#(2i + 2j + k). Find the moment of this vector about the point
i +j + kand about the liner =i + j + k + s(3i — 4j).

26. A table has a triangular top which is an equilateral triangle
ABC in which AB = 2a. D is the mid-point of BC. Three forces of
magnitude P, 2P, 3P act vertically downwards at A4, B and C
respectively. Find the sum of their moments (a) about A B (b) about
AD.

27. A force F; = 4i — j — 2k acts at a point whose position
vector is 4i — 2j + 2k. Write down the equation of its line of action.
Asecondforce F, = i + j + 2k actsata point Pontheliner = 5i +
3j+ k + M4i — 10j — k). If F,; and F, intersect, find P and the
point of intersection.

28. The three lines r = 6i + 4j + 4k + s(ai + bj + 3k), r =
—10i + 2j — 3k + t(2j — ck) and r = —8i + 10j — 10k + u(—4i
+4j + 4k) are concurrent. Find the values of a, b and c.

29. Given that F=sin6i + cosfj and dr = [(1 + cos 8)i —
n/2

sin 6j] d6, evaluate F-dr.

0

30. (a) In a parallelogram ABCD, X is the mid-point of _111:3 and
the line DX cuts the diagonal AC at P. Writing AB = a, AD = b,
AP = JAC and DP = ub?(: express Zﬁ(i) in terms of 4, aand b (ii) in
terms of 4, aand b. Deduce that P is a point of trisection of both AC
and DX.

(b) Define the scalar product a . b and the vector producta x b of
two vectors a and b.

The points P, Q, R have coordinates (1,1,1), (1,3,2), (2,1,3)
respectively, referred to rectangular axes Oxyz. Calculate the
products P_Q’ . FR: Fé x PR and deduce the values of the cosine of
the angle QPR and the area of the triangle PQR. (JJM.B))

31. (a) If p is a unit vector of varying direction, prove that
p.dp/dt is zero. Hence, show that the component of d?p/dt? in the
direction of p is —v?, where v is the vector dp/dt.
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(b) By considering the scalar product of the vectors ad + a,j+
ask and byi + b,j + b;k, show that for any real numbers a,, a,, as,
bla bz, b3 (al + az + 03)(172 + bZ + b3 ) = (albl + a2b2 + a3b3)2

(J.M.B)

32. Four pomts P, Q R S in n a plane through the origin O have

position vectors OP OQ OR OS ngen by 2i + 3, 3i + 2j,4i + 6,
9i + 6j, respectlvely, where i and Jj are given non-parallel vectors,
Express the vectors PR and QS in_terms of i and j.

Show that the position vectors 04 and OB of the points 4 and B
on PQ and RS respectively, and such that PA/PQ = aand RB/RS =
b, are (2 + a)i + (3 — a)j and (4 + 5b)i + 6j respectively. Hence
determine the position vector with respect to O of the point of
intersection of the lines PQ and RS. (J.M.B))

33. Given the two lines L,, L, whose equations are respectively,
F=(d+ 20+ t(b —3éandr = (-24 — 26— & + sd + b) show
that they intersect at P and find the position vector of P. What is the
condition that L,, L, are at right angles? If this condition is
satisfied, write down the equation of a third line L; through P such
that L,, Lz, L, form a right-handed set of mutually perpendicular
axes. [d, b, ¢ are constant unit vectors.]

34. Differentiate the following expressions, given that r is a vector
function of t and r is its modulus, @, b are constant vectors and a, b
their moduli.

2
(a) %a(%{;) (b) (a. by (¢) (a.r)b

1 dr dr
2, 2 ar &
(d) r +r2 (e)rxdt () r'dt'
35. Show that
dr d% dr\?
Hence, given that d?r/dt* = —n?r, prove that (dr/dt)2 = ¢ — n*r?,

where ¢ is an arbitrary constant.

36. Forces 104 and ,uOB act along the lines 04 and OB respec-
tively. Show that the resultant is a force (2 + u)OC where C lies on
AB and AC:CB = u:4A.

Forces 34B, 2AC and CB act along the sides AB, AC and CB
respectively of a triangle ABC. Their resultant meets BC in P and
AC in Q and its magnitude is kPQ. Find BP:PC, AQ:QC and k.

(London)
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37. Show that the three vectors i+ j + k, 2 —3j + k and
4i + j — Sk are mutually perpendicular.

38. Ois any point in the plane of a square ABCD whose dlagonals
mtersect atE. Four forces are represented completely by 30A ZOB
30C and 20D. Show that their resultant passes through E and find
its magnitude in terms of OE. (London, part)

39. 0, A, B, C are four points in a plane. The position vectors of
A, B, C with respect to O as origin are a, b, ¢ respectively. Prove that
scalar quantities 4, g, r, not all zero, exist to satisfy the identity

‘a + ub + re = 0.

40. Three points A, B and C have position vectors i + j + k,
i + 2k and 3i + 2j + 3k respectively, relative to a fixed origin 0. A
particle P starts from B at time ¢ = 0, and moves along BC towards
C with constant speed 1 unit per second. Find the position vector of
P after t seconds. (a) relative to O and (b) relative to A.
If the angle PAB = 0, find an expression for cos 0 in terms of ¢.
(London)
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4
SPEED AND VELOCITY

4.1. AVERAGE SPEED

Definition

distance travelled

Average speed time taken

We note that no reference is made to the direction of the motion
and thus average speed has magnitude only and is a scalar (refer to
Section 2.1). For example, if a train travels 200 km in 4 h, its average
speed is 50 km/h. It will be noted that the average speed gives no
indication of the speed at any instant, which could have any value
up to the top speed of the train.

Exercises 4a
The following is a portion of a train time-table giving the depar-
ture times of four different trains from four consecutive stations:

Trains

Station ] 2 3 4
A 08-05 09-00 10-21 11-00
B 08-15 11-10
C 08-28 1041 11-25
D 08-38 11-35
E (arrive) 08-49 09-30 10-54 11-44

The distances between successive stations are 4to B,5km, Bto C,
6km,CtoD,5kmand D to E,4 km. Use this information to answer
Questions 1 to 4. (Time spent at a station is ignored.)

1. What are the average speeds of each of the four trains in
travelling from A4 to E.

2. Find the average speeds of the first train between the successive
stations Ato B,Bto C,CtoDand Dto E.

3. In Question 2, does the average of the four answers give the
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same result as in the first part of Question 1? If not, explain why
they are different.

4. What is the speed of the fastest train between 4 and C?

5. A car is travelling round a semi-circular bend of radius 1 000 m.
If the time taken is 2 min, find the average speed of the car around the
bend in kilometres per hour.

4.2. SPEED

The average speed gives no indication of the motion of a particle at
any instant during the interval considered. To find the instantaneous
speed at any instant, we consider the average speed over any small
interval of time, &t, which includes that instant. If, as we make &t
smaller and smaller, the average speed approaches a definite value, v,
we call v the speed at that instant. This can be stated more precisely
using the notation of limits and the differential calculus.

Definition—If during a time interval, t tot + dt,a particle moves a
distance, s, then its speed v, at time ¢, is given by
I ds ds
v=lim - =",
a—0 0t drt
ST unit of speed ... m/s.

If the relation between the distance travelled and the time taken is
known from theoretical considerations, then the distance—time
curve can be drawn. For example, for a falling body s = 16¢2 and
the curve is shown in Figure 4.1.

Figure 4.1

The average speed between any two pointsis given by BP/AP, and
its speed v, at any time ¢, is ds/dt which is the slope of the curve at
time t. v can be found by differentiation, that is, in the foregoing
example, s = 162

57



SPEED AND VELOCITY

ds
v a& 32t.

When the equation connecting s and ¢ is not known, but a set of
pairs of values of s and t are given, then a smooth curve can be
drawn. An approximate value of v can be found by drawing a
tangent to the curve and finding its slope.

In the special case when the speed is constant,

ds (v constant)
—=v( .
dt
Therefore by integration s = vt + ¢ and the distance-time curve is a
straight line whose slope is v.
If, initially, when t = 0, s = 0, then it follows that ¢ = 0 and we
have that

s = L.

Example 1. The equation of motion of a particle subject to a force
proportional to its speed is s = 10(1 — e °') where s m is the distance
moved in t seconds. Find its speed, v, at the start of the motion and
after %s.

s=10(1 —e™>)
ds
=& 50e %
b=y e
Initially t=0 and v = 50e° = 50m/s.
At time t =1, v = 50e" !
50
=" = 184 m/s.
e

Example 2. Bis10km from A and a motorway runs directly from A to
B. Three cars P, Q, R, are travelling with constant speeds of 45 km/h,
70 km/h and 60 km/h respectively, P and Q from A to B and R from
Bto A. Pand Q pass A at 1600 and 1602 h, R passes B at 16:05 h.
Find, graphically, when R meets P and Q and when Q overtakes P.

Since the speeds are constant, s = vt, that is, f = s/v. Since P
covers the 10 miles from A to B at 45km/h.

P takes 32 h = 42 x 60 min = 133 min
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P arrives at B at 16-135 h.

Similarly Q takes 1§ x 60 = 82 min
Q arrives at B at 16:104 h
and R takes £3 x 60 = 10 min

R arrives at 4 at 16-15h.

Tabulating these results we have,

P Q R

Time at A 16:00 16:02 16:15h

Time at B 1613} 16:10% 16:05h

The answers are: R meets P at 16:083 h; R meets Q at 1608 h and
P overtakes Q at 16053 h. (Refer to Figure 4.2.)

Distance from

Ain km
B8 10} R Q [
1
5 b
it
; '
) I .
1 b Time in
A 0 —— /‘ A L minutes
16-00 16-05i R meets‘CN 6+10 16-15
P overtakes Q R meets P
Figure 4.2

Exercises 4b

1. Draw a distance-time graph for each of the following :

(a) A body moves with a constant speed of 6 m/s for 10s.

(b) A body moves from A to B with a constant speed of 8 m/s, the
distance A4 to B being 384 m.

(c) A body moves for 10 s at a constant speed of 18 m/s, stops for
6 s, and continues at a constant speed of 18 m/s for a further 63 m.

(d) The distance s metres moved by a body in ¢ seconds is given by
s=t*+6:t=0tot = 20]

2. Inquestions 1{c) and 1(d), find the average speed of the body for
the first 18 s in each case.

3. The distances from A to B and B to C are respectively, 20 km
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and 15km. A cyclist takes 1 h 40 min to travel from A4 to B, where
he stops for 20 min. He then cycles from B to C. Assuming that he
travels with the same constant speed while cycling, draw the distance—
time graph of the journey. Find his speed while cycling and his
average speed for the whole journey.

4. The distance s metres travelled by a particle in ¢ seconds is
given by the formula s = 16¢:2. Draw a distance-time graph for
t =0tot = 6, and from the graph find:

(a) The average speed in the first 3 seconds.

(b) The average speed in the second 3 seconds.

(¢) The average speed for the whole 6 seconds.

Find also the instantaneous speed at t = 2y and t = 5.

5. Ifa cyclist goes from A4 to Bat 12 km/h and returns at 15 km/h,
what is his average speed for the whole journey?

6. The distance s metres travelled by a particle in 'seconds is given
by s = 10sin (4t — n/2). Find its speed whent = n/12and ¢ = /3.
Also find its distance from its starting point when it first comes to
rest.

7. The distance travelled by a body in ¢ seconds is given by
s = 5t + t2cm. Find its average speeds for: the first second, the
first 1 second and the first 1§5'second. Deduce the average speed for
the first 1o second and hence deduce the instantaneous speed at
t=0.

8. A particle A leaves a point O and travels in a straight line at a
constant speed of 10m/s. Simultaneously, another particle B
leaves O and travels along the same line in the same direction, its
distance from O is given by s = 2¢% [s in metres, ¢ in seconds]. On
the same diagram draw the distance-time curves for the two particles
fromt = 0tot = 6 and find when and where B overtakes A.

If A stops after 3 seconds, find when and where B overtakes A.

9. Acyclist travels at a constant speed of 12 km/h from A to Band,
35 min after he leaves A4, a second cyclist sets out from A4, also at a
constant speed, and overtakes him 35km from A. Both cyclists
continue without varying their speeds until they reach B. If the
second cyclist takes a further 3h 56 min to reach B, find, by a
graphical method, how long he has to wait at B for the first cyclist to
arrive.

10. A train leaves Preston at 12-:00 h and reaches London at
15:00h. During the journey it meets another train travelling to
Preston which left London at 12-40 h. If the first train had travelled
13 ths of the journey when they meet, find the time at which the
second train arrives at Preston. Assume that the trains travel at
constant speeds.
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4.3. VELOCITY
Deﬁnmon—The velocity of a point is its rate of change of displace-
ment, i.e., if a point moves from P to P’ in time Jt,

. . [PP
velocity = lim |——1,

a—0\ Ot
or if
— ds
0s = PP’ wehave v=—.
dt
PI
s+ds
P
s
(0]
Figure 4.3

Referrmg to Figure 4. 3 ifat times t and ¢ + 3¢, a point P has position
vectors OP = s and OP = s + os with respect to an origin O, then
ds os PP

=—=I1lim — =1
y dt — {»npét P1—>mP ot

In the limit as P’ — P, P'P becomes a tangent at P to the path of P.
Therefore the direction of v is tangential to the path of P.
Also

hord PP’ th of PP
chord PP lim length of path

ol = )!'ITP ot T pop ot
— i ds
- P'l—»mP ot
= speed of P

Thus the magnitude of the velocity v is the speed.

For uniform, or constant velocity, a particle must be moving with
a constant speed in a constant direction.

Note that both magnitude and direction must be constant for a

61



SPEED AND VELOCITY

velocity to be uniform. A particle describing a circle uniformly has
constant speed but not a constant velocity because its direction is
constantly changing. In the case of motion in a straight line, the
velocity is constant if the speed is constant.

Example. A particle moves so that after t seconds its displacement s is
given by s = (3t> + 1)i + (¢* — 5t)jm, where i and j are unit vectors
due east and north, respectively. Find its velocity v after 3 seconds in
magnitude and direction.

s = (3% + i + (¢* — 50)j
ds

v:a:

6ti + (42 — 5)jm/s.
Whent = 3,
v = 18i + 103jm/s.

o] = /(187 + 103%) = 104-6 m/s.

|
{
I
|
|
|
|
1
-

18 {
Figure 4.4
Referring to Figure 4.4,

tan 0 = 18/103 = 0-1748
0 = 9° 55
The velocity is 105 m/s in a direction north 9° 55’ east.

Exercises 4c

In all the following exercises, i and j and k denote unit vectors
due east, due north and vertical respectively, unless otherwise stated.

1. A particle moves so that after ¢ seconds its displacement is
2t%i — tjcm. Find its velocity after 2 seconds in magnitude and
direction.

2. A particle moves so that its displacement after ¢ seconds is
sin 2ti + cos 2tj m. Show that the magnitudes of both its displace-
ment and its velocity are constant. What path does it follow?

3. A particle moves so that its displacement after ¢ seconds is
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4t3a m, where a = 3i — J. Find the magnitude and direction of its
velocity after 1 second. What is its position at that time and what
shape is its path?

4. A particle P has a velocity of 37/ + 2j m/s, where i and j are unit
vectors parallel to Oxand Oy respectively. If Pisinitially at the point
(3, —4) m, find its position after 3 seconds.

5. If,in Question 4, a second particle Q has a velocity of 2i — jm/s,
and was initially at the point (1, 0), find its position after 3s. Hence
find how far apart P and Q are after 3 seconds.

6. A particle has a constant velocity ». In one second it movesina
straight line from the point P(5, 3) to the point Q(9, 2). Express its
velocity in terms of i/ and j (unit vectors parallel to Ox and Oy
respectively). Hence, find its position (a) 3 seconds (b) 7 seconds and
(c) t seconds after passing P.

7. Find the magnitude of the resultant of the three velocities,
a=5i+2— kym/s,b=(2i — 3j + 4k)m/sande = (—4i + 5 +
9k) m/s.

8. A particle moves so that its displacement after ¢ seconds is
cos t cos 2ti + sin t cos 2¢j + sin 2tk metres. Find the magnitudes
of both its displacement and its velocity after ¢ seconds.

9. A particle moves so that its displacement after time ¢ is at?i +
2atj. Show that at any time ¢ the direction of its velocity is north
tan ! (t) east. What is the cartesian equation of its path?

10. The position of a particle at time ¢ is cos2tcos 3ti +
cos 2t sin 3¢ + sin 2tk. Show that the magnitude of the displace-
ment is constant and find the magnitude of its velocity.

4.4. RELATIVE VELOCITY

Consider two aeroplanes Q and P flying with different velocities. In
a simplified case they can be flying in the same straight line with P
ahead of @ and flying faster. To an observer in Q, P will appear to be
flying away from him with an apparent speed equal to the rate at
which the distance between them increases.

In general, both the magnitudes and directions of the velocities of
Q and P will be different. An observer in Q looking at P will estimate
P’s apparent velocity, called the velocity of P relative to Q, by the
rate at which the displacement between them alters in magnitude and
direction.

Definition—The velocity of P relative to Q (vpg) is the rate of
change of the displacement QP

ie. vpo = d(QP)/dt
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Now, ifat time t the displacement of P from some fixed pointis spand
that of Q, sy, then we have

@ = §Sp — SQ
vpg = d(sp — sp)/dt
_ dsP dSQ

dr dt
va = vp - UQ.

Thus we have shown that the velocity of P relative to Q is the
vector difference of the velocity of P and the velocity of Q, i.e., that
the velocity of P relative to Q is the resultant of the velocity of P and
the reversed velocity of Q.

In problems, the relative velocity can be found by the usual
methods of finding resultants (refer to Chapter 2), that is, from
vector diagrams or by resolving. Also, writing the velocities in terms
of unit vectors Z and j may simplify presentation. The methods are
illustrated in the examples which follow.

When the relative velocity is given we can use the derived relation:

Vp = Upg + Vo.
Example 1. A ship is steaming due north at 16 km/h and another ship is

steaming due west at 12 km/h. Find the relative velocity of A with
respect to B.

Velocity of A
16 km/h § A relative to B

B
W —eeeeee.
12 km/h P Vg
{Space diagram) (Vector diagram)

Figure 4.5

Referring to the vector diagram in Figure 4.5, P_Q’ represents the
required relative velocity and

PQ* =122 + 16> . PO =20
tan NPQ = 12 S, /.NPQ = 36°52.
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The relative velocity of A with respect to Bis 20 km/h, in a direction
N. 36° 52'E.

Example 2. A ship is steaming due west at 18 km/h. To an observer in
the ship a hovercraft appears to be moving in a direction north west at
12km/h Find the velocity of the hovercraft.

Using the derived relation (see page 64)

Vp = Upg + Vg

where vpg is the velocity of P relative to Q. We have that vpg is
12 km/h in a direction north-west, and v, is 18 km/h due west. The
resultant of these two is vp.

8
vp 12 Ypoa
12
o
1350 169
w A
¢ v,
Q
{(Vector diagram)
Figure 4.6
Referring to Figure 4.6

lop2 = AB? = AC? + BC? — 2AC . BC cos 135°
lopl? = 182 + 122 + 2.18.12.0-7071
[op| = 27-81 km/h.

BC BA
Also — = =
sin BAC  sin 135°
. ~ 12 x 0-7071
sin BAC = ‘78—1‘—‘-
= (3051

/ BAC = 17° 46..

vp is 27-81 km/h in a direction N. 72° 14' W.

It will be remembered (refer to Section 3.5) that a vector may be
expressed in terms of components, and that in solving problems it is
particularly useful if the components are at right angles.

Example 3. A steamer is travelling north-west at 10 km/h. What isthe
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apparent velocity of the steamer as seen by a man in a boat which is
travelling N. 60° E. at 5 km/h?

Figure 4.7

Referring to Figure 4.7 we see that the components of the velocity
of the steamer are 10cos45° north and —10sin45°east. The
velocity of the steamer is therefore:

vs = —5/2i + 5/2.
Similarly, the components of the velocity of the boat are 5 cos 60°
north and S cos 30° east. The velocity of the boat is therefore:

vg = %\/gl + 3J.
The apparent velocity of the steamer from the boat is

bsp = Vs — U
= (=5/2i + 5,/2) — G/3i + 3))
= (=52 = 3/3)i + (52 - Dj
= —11:40i + 457j.
Apparent speed = (/[(4:57)* + (—11-40)*] = 12-29 km/h.
If 8 is the angle vgz makes with j,

— 1140
tan 0 =
457
0= —68°9

Apparent speed is 12:3 km/h in a direction N. 68° 9" W.

Example 4. A man travelling north at 14 km/h finds that the wind
appears to blow from the west. On doubling his speed it appears to
come from the north-west. Find the velocity of the wind.
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i and j will be taken as unit vectors due east and due north
respectively.
Any velocity coplanar with 7 and j can be written xi + yj (refer to

Section 3.4).
Let the wind’s velocity be

xi + yj ...(1)

The original velocity of the man is 14j, therefore the velocity of the
wind relative to the man is

xi + yj — 145

xi +(y — 14)j
but this is from the west and is therefore of the form ki (k positive) the
coeflicient of j being zero.
y—14=0
y=14 and x>0 (ii)
When he doubles his speed, the man’s velocity becomes 28j and
the velocity of the wind relative to the man is
xi + yj — 28 (ii1)
or xi + (y — 28)j
but this is from the north-west and is equally inclined to —i and j,

therefore it is of the form +pi — pj. That is, the coefficients of i and
j are equal in value but opposite in sign.

+x=—y+ 28 (iv)
From (ii) and (iv) x = 14 and y = 14

from (i) the wind’s velocity is 14i + 14j

or 14\/5 km/h from the south-west.

Check : Substituting in equation (iii) we have 14 — 14j which is of
the required form pi — pj;and NOT —pi + pj.]

Because we are only interested in the change of relative position
between two points, P and Q, we do not alter the relative velocity if
we impress on both P and Q equal velocities. Thus, an alternative
way of regarding the relative velocity of P with respect to Q, is to
impress on both a velocity of —g¢, Q is thus reduced to rest and P has
has the velocity p — ¢, which is the relative velocity of P with respect

to Q.
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Similarly we can impress a velocity of —p on both, P is thus
reduced to rest and Q has the velocity ¢ — p, which is the relative
velocity of Q with respect to P.

Example 5. A ship B is steaming on a straight course south-east at a
uniform speed of 15km/h. Another ship A, is at a distance of 10 km
due north of B and steams at a speed of 12 km/h. Find the course that
A must steer in order to get as close to B as possible, and their minimum
distance apart.

15 km/h )

15 km/h \

12 km/h

|u50
| 15 km /h

(Space diagram illustrating the
method of reducing B to rest)

Figure 4.8

(Vector diagram)

Let A and B be the initial positions of the ships. Figure 4.8, shows
the position after B has been brought to rest by impressing a velocity
of 15 km/h in a direction north-west onto both ships.

B is at rest and A has a fixed velocity 15 km/h north-west repre-
sented by pc (refer_to the vector diagram in Figure 4.8). To DC we
can add a vector CP representing 12 km/h. The length of CP is
fixed at 12 units, but its direction, which is the direction in which 4
steers, can vary. Various positions of CP are indicated and P lies on
a circle centre C radius 12 units.

DP is the resultant of DC and CP and represents the relative
velocity R of A with respect to B. In order for A to approach as near
to B as possible, it must sail as close as possible to the direction AB,
that 1s, angle o must be a minimum. Since DC is fixed, we must
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therefore make / CDP a maximum. Thisisso when DP is tangential
to the locus of P and / DPC = 90 degrees. When ADPC is right
angled at P,

sin/_CDP = {3 = 08,
0 =/CDP =53%.

. CP makes an 4ngle of 45° — 36° 52’ = 8° & with the north-
south line and the required course is S. 8° 8" E.

To find the minimum distance apart, from B, draw BQ perpendicu-
lar to R. Then

BQ = ABsina
and o = 180° — 45° — 0 = 180° — 45° — 53° 8 = 81°52".
BQ = 105sin 81° 52
=990 km.

In the following example distances are measured in kilometres,
speeds in kilometres per hour and fand jare unit vectors due east and
due north respectively.

*Example 6. Two ships are observed from a coastguard station at
10-00 h and 11-00 h respectively. They have the following displace-
ment (s) and velocity (v) vectors

s;=i+3 and vy, =i+ 2 at1000h

s,=i+2 and v,=5+6j at11-00h
If they continue with the same velocities, find the smallest distance
between the two ships in the subsequent motion and at what time this
occurs. Also if at 11-00 h the first ship had changed its velocity to

Ll + 2j show that the ships would have collided and find the time of
collision.

At 11-00 h the displacement of the first ship will be
sSi=0+3)+1.6+2)

=2i+ 5.
Hence at 11-00 h,
relativedisplacement s, = s, — 51 = —i — 3j,
relative velocity vy, =0, — v, = 4 + 4,

* This example may be omitted on the first reading of Part I.
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giving the situation in Figure 4.9 which shows displacement and
velocity relative to the first ship.

A1)

B(2)
Figure 4.9

Shortest distance = AC = ABsin 0
= |s21| Sin 0

_|034]l824] sIn O

|02
= M (refer to Section 3.9)
[034]
1 i j k
=——|-1 =3 0
4/2la 4 o
1
= ——[8K]
4\/5
= /2km.
Relative distance sailed BC = ABcos 0
= |s,,] cos 6

_ [v21]524] cos 0

[024]
= M (refer to Section 3.8)
[v24]
—4-12-0
4\/5
16
=——km.
4\[2
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Relative speed is 4\/5 km/h

16/4/2
4\/5
The shortest distance between the ships is \/5 km and this occurs at

11-30 h.
If we put v, = 4 + 2j, then

h.

N

time taken is

$;. = —i—3j and vy, =% + 4,

which are parallel but in opposite directions. Hence the ships will
collide.
If they collide after ¢ hours, then

i+ 3=tGi+ 4
_3h
=3h

They will collide at 1145 h.

Exercises 4d

1. Three ships are travelling with velocities v, , v,, b3 respectively,
wherev, = 2i — 3j,v, = 5 + 2j;v; = —i + j. Findthemagnitudes
of the relative velocities of A with respect to B, B with respect to Cand
C with respect to A.

2. One man, 4, is travelling due south at 20 km/h, another man, B,
is travelling due east at 14 km/h. Find the magnitude and direction
of the relative velocity of 4 w.r.t. B.

3. A man on a hovercraft, which is moving with velocity v, = 5i
+ 6j, finds that three ships appear to be moving with velocities
v, =2 — 4j, v; = —13i + j, and v, = 7i — 8j. Find the actual
velocities of the ships.

4. Two roads meet at right angles at P. One man, A4, is walking at
3km/h along one road towards P and observes another man, B,
trotting at 6 km/h along the other road towards P. Find the relative
velocity of A with respect to B.

5. Rain is falling vertically. A man in a train travelling at 60 km/h
notices that the rain makes lines on the window inclined at 10 degrees
to the horizontal. What is the speed of the rain?

6. The racing pennant of a yacht, which is moving north west at
5 km/h, shows the wind apparently coming from the west, and its
apparent speed is 10 km/h. What is the true velocity of the wind?

7. Ariver of width, d, has a current of constant velocity, Au. A man
rows a boat with constant speed, u(= |ul), relative to the water. He
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crosses by the shortest path. Find his time for the journey if 4 < 1.

8. To an observer on shore a ship appears to be travelling
N. 75° 58’ W. at 12-37 km/h. The ship is being carried by a current
which is flowing with a velocity of 4-24 km/h in a direction north-
east. Find the velocity of the ship relative to the water.

9. A man travelling west at 15 km/h finds that the wind appears
to blow from the direction S. tan~* 1 E. If he reduces his velocity to
10 km/h towards the west, the wind appears to blow from a direction
S.tan "'} E. Find the velocity of the wind.

10. With distances measured in kilometres and speeds in kilo-
metre per hour, two ships are observed, at the same time, to have the
following displacement (s) and velocity (v) vectors:

s;,=2+3 and v, = —i—j
s, =4+7 and v,= —3i—j

If they continue to sail with the same velocities, find the time at
which they will be closest and what this closest distance is in kilo-
metres.

4.5. ANGULAR SPEED

Definition—If a point P is moving in a plane and O is a fixed point
and O A a fixed line in the plane, then the angular speed of P about O
is defined as the rate at which the / POA increases (refer to Figure
4.10).

0 /0 A

Figure 4.10

The angular speed is said to be uniform when equal angles are
turned through by O P in equal times, however small these times may
be.

The instantaneous angular speed, is the angular speed at any
instant and is obtained by considering any small interval of time, dt,
which includes that instant. If 50 is the corresponding angle turned
through by OP then,

o0 do

Instantaneous angular speed = lim — = — = 6 )
aneous angu pee Jim 50 dr [or w]
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THEOREM

When a point P moves around the circumference of a circle of
radius r, then its angular speed w at any instant is given by w = v/r,
where v is its speed at that instant.

(o]

Figure 4.11

Let PQ be an arc of the circle length, ds, where P is the position of
the point at the instant under consideration (refer to Figure 4.11).
Let /_POQ = 40 and let P move from P to Q in time dt. Since

arc PQ =r x / POQ (inradians),

ds =rdf
os 40
ot "ot
and in the limit as Q — P this gives
v = r% =rf
or v=r.w
w=".

For a point P travelling with constant speed round the circum-
ference of a circle (that is, with constant angular speed about 0), if n
is the number of revolutions it makes in one second, w = 2nn.

Example 1. A wheel centre O, radius r is rolling uniformly, without
sliding, along a straight line. Find the velocity of any point on its
perimeter.

Suppose that, after time ¢, P comes into contact with point P’
on the ground. Since there is no slipping, each point of the arc AP
touches the ground in succession.

: arc AP = AP/,

because both these distances are described in the same time.

73



SPEED AND VELOCITY

The speed of P relative to centre O = speed of P’ along the ground
= speed of centre O (because O is always directly above the point P’).
Hence, if v is the speed of the centre of the wheel, any point P on its

8 S
! Q
28 R
v
o
T
)
o’
A
Figure 4.12

circumference has two velocities (refer to Figure 4.12), v horizont-
ally, due to the forward motion of the wheel, v tangentially, due to the
rotation of the wheel.

Let / PAB =16
/_POB = 20 (angle at centre equals twice the angle at the
circumference)
/ QPT =28 [PT perpendicular to OP and PQ perpendicular
to AB].

Using horizontal and vertical components, P has velocities vi and
v cos 26i — v sin 26j.

vp = v(l + cos 20)i — v sin 26

= v2 cos? i — v2 sin 0 cos 0f

= 2v cos O[cos i — sin 6f)

= 2v cos O[cos (— )i + sin (—6)f].

vp has a magnitude 2v cos 6 in a direction of — 6 with PQ.
Now / QPR = / SPB (PQ|| to BS)

= / BAP (angle between chord and tangent)
= 6.

Therefore, the direction of vp is along PR, the continuation of BP,
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which is perpendicular to PA. The angular speed w about 4 is

2ucos(9_ 2vcos€_v
PA  2rcosf ¢

Since the wheel is rigid, all points in AP have the same angular
speed, w, about 4 (the point in contact with the ground) as the wheel
about its centre.

Speed of Aisv — v = 0.

Speed of B, the highest point of the wheel, is v + v = 2v.

Example 2. Two model cars A and B are moving with speeds of
1-5m/s and 2 m/s respectively, around two tracks made up of two
pairs of parallel straights connected by two pairs of concentric semi-
circular ends of radii 0-5m and 0-6 m. B enters on its outer semi-
circular track slightly behind A which has traversed 02 m of its
inner semi-circular track. Will B overtake A before reaching the next
straight part of the track?
A’s speed is 1-5 m/s on a circular path of radius 0-5m.

1-5
A travels at 05— 3 rad/s.
A has travelled a distance of 0-2 m.
02
A is — = 04 radians ahead.
05
B’s speed is 2 m/s on a circular path of radius 0-6 m.
2
Is at -— = 33 .
B travels a 06 33rad/s
B overtakes A at a rate of 3} — 3 = jrad/s.
If still travelling on the semi-circular bend, B would overtake A
after 0-4/4 = 1-2s, Inthistime A would havegone 1-2 x 3 = 3.6 rad,

which is greater than n. Therefore B will not overtake 4 before
reaching the next straight part of the track.

4.6. ANGULAR VELOCITY AS A VECTOR QUANTITY*
Consider a rigid body rotating about a fixed axis ON at a speed of w
radians per second. Then the angular velocity is uniquely specified
by the vector o, of magnitude w, and whose direction is parallel to
the axis ON and in the direction which a right-handed screw would
advance with the given rotation.

* This section may be omitted on the first reading of Part 1.
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Let O be a fixed point on the axis ON and P any point in the body
with position vector r with respect to O (refer to Figure 4.13). If PA
is perpendicular to the axis of rotation meeting it at A, then the point

N
w

7

w«~

@&
> ‘
N

Figure 4.13

P is moving in a circular path of radius AP, and centre A, whose
plane is perpendicular to ON. Its velocity vy is given by:

[vp] = w AP
= wOPsin 0
= orsin
= |o x | (refer to Section 3.9)

and its direction is perpendicular to the plane OP A, that is, the plane
of r and w.

Vp =W X F

by definition of the cross product the sense of @ x r is the same as
that of the velocity vp.

Exercises 4e

1. Find the angular speed in rad/s of any point on a disc if

(@) it is making 200 rev/min,

(b) it is making 225 rev/min,

(c} a point on its circumference has a constant speed of 5 m/s and
its radius is 2 m.

2. Find the speed of a point moving in a circle of radius 3 m with
angular speed : (a) 4 rad/s (b} 300 rev/min (c) 120°/min.

3. A flywheel is rotating at 3 000 rev/min about its centre. Find
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its angular speed in radians per second. Also find the speed of a
point on the flywheel 4 cm from its centre.

4. Assuming the Earth to be a sphere of radius 6 400 km and that
it rotates on its axis once every 24 h, find its angular speed, and the
speed (in metres per second) of a point on its equator.

5. Anengineistravelling at 25 m/s and one of its wheelsis 1-2 m in
diameter. Find the speed of each of the two points of the wheel
which are 0-3 m above the ground.

6. Find the time between 4-0 and 5-0 o’clock at which the minute
and hour hands of a clock are concurrent.

7. The wheels of a bicycle are 60 cm in diameter and the cranks
are 15 cm long. If the cranks turn twice for each revolution of the
wheel, find the angular speed of the cranks when the bicycle is
moving at 20/3m/s. Find the speed of each pedal relative to the
bicycle when the cranks make an angle of 60 degrees with the vertical
in the forward direction. Does the angle of 60 degrees affect the
answer?

8. The second hand and the minute hand of a watch are concen-
tric. They coincide at exactly 10-00 h. When will they next coincide?

EXERCISES 4*

The following is a portion of a train time-table giving the arrival
and departure times from three consecutive stations A4, B, C. The
distances A to Band Bto C are respectively 6 km and 9 km. Use the
information given to answer Questions 1-3.

ouT IN
Trains Trains
Station 1 2 3 Station 4 5 6
A dep. 12:05 12:32 13-00 C dep. 12:10 12:40 1312
B arr. 12:16 e 13-10 B arr. 1225 — 1324
B dep. 1220 — 1313 B dep. 12-30 — 13-30

C arr. 1235 12:52 13-28 A arr. 12-40 12-55 13:39

1. What are the average speeds of each of the six trains between A
and C.

2. On the same diagram draw the space-time graphs for all the
six trains. Assuming that their speeds between stations are constant,

* Exercises marked thus T have been metricized, see Preface.
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find all the times between 12-00 h and 13-30 h when the trains are
passing one another.

3. Check the answers to Question 2 by calculation.

4. A cyclist leaves A4 at 12-00 h and travels from A4 to B at a uni-
form speed of 15km/h. After cycling 43 km he meets another
cyclist, also travelling at a uniform speed, who left Bat 12-07 h. Ifthe
second cyclist arrives at 4 at 16-54 h, find graphically, the distance
from A to B and the speed of the second cyclist.

5. A and B are two places 90 km apart. A cyclist leaves A at
06:00 h and cycles at a uniform speed of 15km/h to B. At06-10h, a
second cyclist leaves B for A and also cycles at a uniform speed.
After 30 km he has a 20 min rest and then continues his journey at the
same uniform speed as before. He meets the first cyclist 45 km from
A, find the time at which he arrives at B.

6. A particle leaves a point O and travels along a straight line, its
distance s metres from O after ¢ seconds being given by 9s = t2,
Simultaneously, another particle leaves O and travels along the
same line in the same direction, its distance from O being given by
3s? = 8t. On the same diagram draw the distance-time graphs for
the two particles from t = 0 to t = 8 and find the position and
time that 4 overtakes B. If, after 3 seconds, B stops, when will A
overtake it?

In the following questions, where necessary, { and j are to be
taken as horizontal unit vectors due east and due north respectively.

7. A ship A is sailing due north at 20 km/h, and a second ship B
is sailing N. 45° E. at 10\/2 km/h. Find the velocity of A relative to B.

8. P has a velocity of 3i — 2j, the relative velocities of Q and R
with respect to P are 2i + 4j and i — 5j, respectively. Find the
velocity of Q relative to R. Is it necessary to know P’s velocity in
order to answer the question?

9. A hovercraft is 8§ km due west of a ship, which is sailing with
a speed of 16 km/h due north. If the speed of the hovercraft is
34 km/h, what is the shortest time in which it can intercept the ship?

10. A man travelling south-east at 2\/5 km/h notices that the
wind appears to come from the north-east. On trebling his speed,
the wind appears to come from the east. Find the velocity of the
wind.

11. A ship is sailing north at 20 km/h. A second ship Bis 10 km
from A4 on a bearing from A4 of S.45° W, If B can sail at 16 km/h,
what course must B steer in order to get as close to A4 as possible?
How near can they be?

12. An aeroplane and a helicopter are maintaining the same
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height above the ground. The aeroplane is moving due north at
80 m/s and the helicopter is moving in a direction N.60° W. at
60 m/s. The helicopter is 32 m due east of the plane and they both
continue with the same velocities. Find the shortest distance
between them in the subsequent motion and the time at which this
occurs.

13. A ship A4 is moving due east at 18 km/h and another ship B
is moving in a direction N. 120° E. at 10 km/h. Bis 12 km due north
of A and both ships continue with the same velocities. Find the
shortest distance between the ships and the time at which this occurs.

14. A ship is steaming due north at 12 knots. To an observer in
this ship a second ship appears to be moving in a direction north-
east at 8 knots. Graphically, or otherwise, find the actual magnitude
and direction of the velocity of the other ship. (London, part)

15. Two straight roads cross at right angles at 0. A cyclist is
travelling at 5 m/s due north. When passing through O, he notices
a motorcar on the other road 200 m from O. The motorcar is
travelling at 12 m/s due east towards 0. Find the velocity of the car
relative to the cyclist and the least distance between the cyclist
and the car.

16. A ship, A, is sailing with a speed of 5km/h in a direction
N.tan~! 2 E. Another ship, B, is sailing with a speed of 5\/5 km/h
in a direction N.tan"*(}) W. The displacement of B from A is
\/ﬁ kminadirection N. tan~ ' 4 E. Expressini,jformthe velocities
of the two ships and the displacement of B from 4. Hence find,
to the nearest minute, when the two ships will be closest together if
their velocities remain constant.

17. A boat is sailing S. 60° E. at 10 knots, and the wind appears
to come from the south. If the boat sails S. 30° E. at the same speed,
thewind appearstocomefromsS. 15° W. Findthespeedanddirection
of the wind.

18. An aeroplane is to fly in a straight line from a point 4 to
a point B due north of 4, and back to 4. If the aeroplane flies at
250 km/h relative to the air, and there is a wind blowing from the
south-west at 50 km/h, show in a diagram the courses which must
be steered on the outward and return journeys. Calculate the ratio
of the times taken from A4 to B and from B to A. (London)t

19. With distances measured in kilometres and speeds in kilo-
metres per hour, two ships are observed at the same time to have
the following displacement (s) and velocity (v) vectors:

s, =3i—2j and v, = 10i + 10j
s; =4i +6f and v, =i+ 3j
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If the velocities remain constant, find the time at which the two
ships will be nearest together. Find also their distance apart at
that time.

20. If, in Question 19, the first ship’s velocity had been 2i + 11j
instead of 10i + 10j, show that the ships would have collided.
Find also the time at which this would have occurred and the
displacement vector of the point of collision.

21. With distances measured in kilometres and speeds in kilo-
metres per hour, three ships are observed from a coastguard station
at half-hour intervals. They have the following distance (s) and
velocity (v) vectors.

s; =2+ 6/ and v, = 5i + 4jat 12noon
s; = 6/ +9 and v, =4i + 3jat 1230 p.m.

s3=11i + 6/ and w3 =2+ 7jatlpm.

Prove that, if the ships continue with the same velocities, two of
them will collide and find the time of collision. If, at that instant,
the third ship changes course and then proceeds directly to the
scene of collision at its original speed, find at what time it will
arrive. (London)t

22. A and B are two points a km apart with B due east of A.
An aircraft flies from 4 to B and back to 4. A wind is blowing at
vkm/h from the south-west. The ground speeds of the aircraft
during the outward and return journeys are u; km/h and u, km/h,
respectively. If the aircraft flies throughout ata speed u km/h relative
to the air (1 > v), show that u; — u, = v./2 and wu, = u? — v2.

Hence find, in terms of u and v, the time taken for the whole
journey. (London)t

23. A steam engine is moving at 20 km/h due north and the wind
is blowing at 10 km/h from the south-east. Assuming that, as the
smoke leaves the engine, it immediately takes the velocity of the
wind, find the angle the smoke trail makes with the engine.

24. A pilot keeps his aeroplane headed due S. at a constant speed
of 200 km/h relative to the air, and after 15 min finds he has travelled
40 km in a direction S. 15° E. Show clearly in a diagram the velocity
of the wind and find its magnitude and direction by measurement or
calculation. Find also the direction in which he must now steer
in order to bring his aeroplane due S. of his starting-point in the
shortest possible time, with the same air-speed of 200 km/h.

(London)t

25. An aircraft 4, which can fly at a maximum speed of 750 km/h,
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sets out to intercept a second aircraft B, which is 100 km away in
a direction 60° W. of S. and is flying due east at 500 km/h.

{a) Find the course (in degrees E. or W. of S.) which 4 should
set if it is to fly in a straight line at maximum speed, and the time
required to reach B.

(b) Find the least speed V; km/h at which A can fly to intercept B.

(¢) Show that if 4 flies at a speed greater than V; km/h but
less than a certain speed V; km/h (which should be found explicitly),
it has a choice of two courses.

(A solution by drawing and measurement will not obtain full
marks.) (W.JE.C)t

26. A and B are two points at sea with B 1 km due east of A.
Three boats start at the same instant, the first from A sailing due
north at a constant speed 8 km/h, the second from B sailing due
east at a constant speed 5 km/h and the third from B sailing due
north at such a speed that the three boats are always in one straight
line. Show that t minutes later the third boat has a speed

gl1— 1% lmm
~ {121 o2 | Kb

Find the velocity of the third boat relative to each of the other
boats 4 min from the start. (London)t
27. A ship A is moving due N. at u km/h, and another ship, B,
is moving at v km/h in a direction 8° W. of N. Initially, B is akm
due E. of A. If B passes to the south of 4, show that the shortest dis-
tance between the ships in the subsequent motion is a{u — v cos 8)/Y,
where V2 = 42 + v? — 2uv cos 0, and occurs after a time av sin 0/V>.
(London)t
28. A battleship, whose top speed is 24 km/h, is detailed to
intercept a convoy steaming due east at 16 km/h. The convoy is
29km away in a direction S.30°E., and it maintains its course.
Find the shortest time in which the battleship can reach the convoy.
29. Two points, A; and A,, moving in a plane have coordinates
(x,,y1)and (x,, y,) respectively, referred to axes fixed in the plane.
State the components (parallel to the axes) of (a) the displacement
A, A, and (b) the velocity of A4, relative to A;.
At a certain instant a ship, A4, , is sailing due east with speed u,,
a second ship, 4,, north-east of A, , is sailing due north with speed
u,. a third ship, 43, north-east of A,, is sailing due south with
speed u;, also 4,4, = A,A; = d. Assuming that the velocities of
the three ships remain constant, find the easterly and northerly
components of the velocities of 4, and A5 relative to 4,. Deduce

81



SPEED AND VELOCITY

—
expressions for the components of the displacements 4,4, and
A;A; after time t. Hence, or otherwise, show that the three ships
are again in a straight line after a time.

uy + 2uy +u; d
T et ' (J.M.B.)
uli; +ug) 2

30. An aeroplane flies round a horizontal square of side a with
constant air-speed v. There is a horizontal wind of constant speed
kv (k < 1) making a constant angle « with one side of the square.
Prove that the time taken for the aeroplane to complete the course is

2a[\/(1 — k*sin® @) + /1 — k?cos® w))/o(1 — k?) (Oxford)

31. A particle P describes a circle centre O with constant speed
while a second particle Q moves with constant velocity along a
diameter AB of this circle. Both particles start from A at the
same moment with P moving faster than Q. Initially the speed
of Q relative to P is \/% m/s and when the angle AOP is 30 degrees
it is /48 m/s. Find the speeds of P and Q.

When P has traced out an arc AP subtending an angle 0 at O
show that the relative velocity makes an angle ¢ with B4 where
tan ¢ = 2cos 6/(1 — 2sin 0). (London)t

32. Two model cars, 4 and B, are moving around two concentric
circular tracks, centre O, radii r and 2r, in the same sense. The
constant angular velocities of O 4 and OB are 4k and k respectively.
If initially, 04 B s a straight line, show that after time 5k the angular
velocity of AB is zero. Find the angle OBA at this instant.
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5
ACCELERATION

5.1. INTRODUCTION

As we have seen in Chapter 4, velocity is a vector quantity having
both magnitude and direction. Ifeither of these change, the velocity
changes.

Definition—The acceleration of a point is its rate of change of
velocity, i.e., if a point is moving with a velocity » (represented by
OP, in Figure 5.1), at some time ¢ and with velocity, v + v (repre-

v+5v Q
— o
v P
Figure 5.1

sented by @), at time, t + Jt, then its acceleration, f, is given by

ov dov
S= s T @

SI unit of acceleration . .. m/s2.

We note that acceleration has both magnitude and direction and
is a vector quantity. Accelerations are compounded by the triangle
(or parallelogram) rule for vector addition (refer to Section 2.3).
From Figure 5.1 we also note that, unless the particle is moving
in a straight line, the direction of év and hence of fis not along its
path nor is its magnitude d|v|/dt (usually written dv/dt).

5.2. MOTION IN A STRAIGHT LINE

For a point moving in a straight line, the direction of motion remains
constant and we consider only changes in the magnitude of the
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velocity, a scalar quantity, and in this case

dv
Ifl=/f= @
or since v = ds
Cdt
d2s
J=Ge
Another useful form of the acceleration is
dv ds dv
I=4 =4 ds
dv
f=2

5.3. UNIFORM ACCELERATION

Consider a point, whose initial speed is 4, moving in a straight line

with uniform acceleration f (positive if the speed is increasing).

If v is its speed and s its displacement after time t, then we have
acceleration = f (constant)

dv .

o — = : ...

r ar (i)

If the general expression for the speed v is known, f can be found

by differentiation or from the slope of the speed—time (v — t) curve.
Integrating the expression (i) with respect to ¢

v=ft+C
but when ¢ = 0, the speed (i.e. ds/dt) is u.
) u=0+C
v=u+ ft
ds
or - u+ ft.

Integrating again with respect to 1,

s=ut +4ft? + D.
But whent = 0, s = 0, therefore D = 0.

s =ut + 3%
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It is to be noted that this equation gives the displacement in
t seconds from a fixed point (the position of the particle at t = 0).
This is not the distance traveiled in the tth second which is obtained
by the displacement in t seconds — displacement in (t — 1) seconds.
(Refer to Example 3.)

. . . dv
Also since acceleration can be written vd—.
s

v% = f (constant)
Integrating with respect to s
=5+ E
and since when s=0, v=u
=0+ E
v = fs + 3u?
or v? = u? + 2fs.
Summarizing we have
v=u+ ft
s =ut + 5ft?
v =u? + 2fs.

Example 1. A train, moving in a straight line with a speed of 72 km/h,
is brought to rest in 2 min with a uniform retardation. Find how far
the train travels before being brought to rest.

u=T72km/h =72 x m/s
= 20m/s

t = 2min = 120s.
The train is brought to rest, therefore v = 0 and we are required
to find s. .
The last two of the three equations we have summarized deal
with s, but in both cases f is included and this is not known. There-
fore we use the first equation to find f.

ie. v=1u-+ft
0 =20+ 120
f=—-L{m/s
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Now substituting in the second equation,

s =ut + 5ft?

s = 20.120 + 4(—120?
s=1200m
s=1.2km

Alternatively, using the third equation,

v? =u? + 2fs
0=20%+2(—%s
202 x 6

S =
2

s = 1200 m as before.

Example 2. A particle starts with a speed of 06 m/s and has an
acceleration of magnitude —0-03 m/s® (i.e. a retardation of 0-03 m/s?).
If it is travelling in a straight line, how long will it be before it comes
to rest and how far will it then have travelled?

In this case u = 06, f = —0-03,v = 0. Using

v=u+ ft,
0 =06 — 003t
= 20s.
Also s = ut + 3ft?
s =06 x 20 + 4 —003)20?
=6m.

Example 3. A particle is travelling in a straight line with constant
acceleration. It tovers 3:5m in the third second and 4-1 m in the
Sfourth second, find its acceleration and initial speed.

f
2s ) 1s ) 1s )
B 35mC 41m D

L'F
7]

Figure 5.2
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Applying s = ut + % ft? to:

section AB s=2u+3f4 )
section AC 35+ s =3u+3/9 ... (i)
section AD 76 + 5 = 4u + 1116. ... (i)
Subtracting (i) from (ii)
®35—u+1irs ....(a)
Subtracting (ii) from (iii)
41 =u+ %17 ....(b)
Subtracting (a) from (b)
06 =412
f = 0-6m/s?
Substituting in equation (b)
u =2mjs.

Example 4. A car moves a distance d in time T seconds. It starts from
rest, and travels in a straight line, accelerating with a constant
acceleration f,, until the brakes are applied and the engine stopped.
It is then subject to a constant retardation, f,, until it comes to rest.
Find an expression for T? and for V, the greatest velocity attained,
interms of f1, f, and d.

Let ¢ be the time during which the car accelerates, therefore T — ¢
is the time during which it decelerates. Similarly, if s is the distance
it travels while accelerating, d — s is the distance travelled while

decelerating.
First part of journey Second part of journey
V =0+ fit 0=V-—-f(T-1
V= fit .. S V=LAT-1 ... (i)
VZ=2fs ... (iii) 0=V?>-20d—s ....(vV)
From equations (i) and (i)
t+T—1t= v + v
ho f2
1 1
T=V{—+ — ....(a)
7l
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From equations (iii) and (iv)

VZ
s+d—s= Tfl + Z_fz
Vi 1
d= ....(b
(fl f) )
¢
From equations (a) and (b)
]
A6 %
AT
2\fi Sz
t 1
T? =2d|— + ).
(f1 fz)

From equation (a)
1 1
V=T —
/(fx fa

1
2d
[

V=

A

Exercises 5a

1. In the following exercises, distance is measured in metres and
time in seconds. f is a constant acceleration, u the initial speed,
v is the final speed and ¢ is the time.

(a) Givenu =3, =4,t =6, find v and s.
(b) Givenu = 14, v = 32, s = 138, find fand ¢.
(c) Given f = —7,v= —7,s =28, finduand .

(d) Givenu = 60, f = —3,t = 24, find s and v.
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2. A body starts from rest and moves with uniform acceleration
in a straight line. It covers 30 m in the eighth second, find its
acceleration.

3. A particle starts with a speed of 200 cm/s and moves in a
straight line with a constant retardation of 4 cm/s2. When will it
come to rest, and how far will it have travelled?

4. A particle starting from rest has an acceleration of 4 m/s2,
Find its speed after 30 seconds and the distance s, covered in that
time. It is then subject to a constant deceleration and comes to
rest in 20 seconds. Find the distance s, covered while decelerating.

5. A body moves with constant acceleration in a straight line
for 5 seconds during which time it covers 3-5m. The acceleration
then ceases and during the next 5 seconds it travels 6:5m. Find its
initial speed and its acceleration.

6. A train is subject to a uniform retardation while travelling
in a straight line. It travels a distance of 100 m while its speed is
reduced from 60 km/h to 20 km/h. Find how much further it will
travel before coming to rest.

7. In two successive seconds a motor car moves through 13 m
and 15 m respectively. Assuming that it is travelling with uniform
acceleration, find its velocity at the commencement of these two
seconds and its acceleration.

8. A motorway runs directly from 4 to B. A car passes A at a
constant speed of 36 km/h, and immediately another car starts
from rest at A with a uniform acceleration of 2-5 m/s?>, When and
where will the second car overtake the first?

9. In Question 8, what time elapses between the two cars arriving
at B, if the second car stops accelerating as soon as it reaches the
first car, the distance from A4 to B being 3 km.

10. A particle is moving in a straight line with uniform accelera-
tion. It covers a distance a in the first n seconds, a total distance of b
in the first 2n seconds. Find its acceleration and initial speed.

5.4. SPEED-TIME GRAPHS

For a variable acceleration which can be expressed as a function of
the distance s, time ¢, or velocity v we have to solve the equation,
Acceleration = F(s) or G(t) or H(v)

and this will be dealt with in Section 5.5.
If there is no known functional relation between the acceleration
and s, t, or v a graphical method can sometimes be used.

Suppose that the acceleration varies but the speeds are known,
or observed at different times, then a speed-time graph can be

&9



ACCELERATION

obtained. Time is plotted along the horizontal axis and speed
along the vertical axis. Itisassumed that the variation is continuous
and the successive points are joined by a smooth curve (refer to
Figure 5.3). The slope of the curve (dv/dt)atany point approximates

(//////////
(99}//////
distance’/,
(travelled/

% o

0 t t, Tt

Figure 5.3

to the acceleration at that point. Also, the algebraic sum of the
area under the curve is given by

b b ds
J vdt = *dt = J ds = s, — S,, the displacement.

Alternatively, if the areas above and below the axis are treated as
positive, then their sum gives the distance travelled.

Example. In a journey of 14 km the speed of a train is given by the
following table :

t minutes 0 1t 1213141516789 10111211314

vkm/h 0] 20|40 |60 |50 |60 65|50 |45]55]65{50|35|30;0
1

Draw a speed—time graph and estimate the distance travelled between
the timest = 2min and t = 7 min.

Referring to Figure 5.4, the distance travelled in kilometres is
equal to the number of units of area in ABCDE. To estimate this
we can construct the ordinates at the points = 2,3,...,7, and
approximate to the area by the sum of the areas of the five trapezia
so formed (converting the time to hours).
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Area = 340 + 60). &5 + 360 + 50} + (50 + 60). &
+3(60 + 65). 5 + 465 + 50). &5
= 135(40 + 60 + 60 + - - + 65 + 65 + 50)
— 560 __ 4;
— 120 — 3

The distance travelled between the second and seventh minute
is 4% km.

60

30

Figure 5.4

Exercises 5b

1. In a speed-time graph the velocities are measured in metres
per second and the time in seconds. It consists of two straight lines
AB, BC joining the points A4 (0, 50), B (10, 100): C (50, 0). Describe
the motion of the particle and find the distance covered.

2. Draw a speed-time graph of a particle describing a straight
line with uniform acceleration of 2 m/s?, having started with an
initial speed of 10 m/s. Plot the graph for values of t between 0 and
10 s and hence find the distance covered in the first 10 seconds.

3. Draw the speed-time curve of a particle moving in a straight
line with initial velocity u, uniform acceleration f for t seconds.
Deduce the formula s = ut + 3 fi2.

4. A car is travelling along a straight road and its speeds taken
at 10 second intervals over 2 minutes are as follows:

Time in s 0 (102030140 (50|60 |70 |80 190|100 | 110|120

Speed in m/s 20 (25 28|30 (31 2725|2018 |16 14 | 8 0

Find the total distance covered in the 2 minutes and the car’s speed
and acceleration after 75 seconds.

5. A particle leaves a point O and travels in a straight line with
a speed v m/s, given by the formula v = 64 — ¢?, where 1 is the time
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in seconds. Draw a speed-time curve from ¢t = 0 to ¢ = 10, and
find from the graph how far the particle travelled in 10 seconds
and how far it travelled in the fourth second. (If possible, check
your answers by integration.) Is the distance of the car from O after
10 seconds the same as the distance travelled in 10 seconds?

5.5. VARIABLE ACCELERATION
(in a straight line)

When the acceleration varies, appropriate equations involving v, s
or t can be found, provided the acceleration is given as a function of
speed, distance or time.

d
If f = F(r) we write d—I; = F(t) and integrate

d
if f=G(s) wewrite vag = G(s) and integrate

. . d d
if f = H(v) we write & H(v) or vl = H(v)
de ds
according to the information given and required, and the ease of
integration.

Example 1. A particle travelling in a straight line has an acceleration
of (—v?%/200 — 32) m/s?> where v is its speed at any time t. If its
initial speed was 40 m/s, find the distance travelled before it comes
to rest and the time taken.

2

. v
Acceleration = 200 32
dv r o,
e 4
UdS 200(0 + 6 400)
v dv 1

v + 6400 ds 200
v dv 1
f(uz + 802 &) ds = _ﬁfds

J‘ vdo _ 1 S
v + 802 200
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llog(u2 +80%) + C = L 5.
2 200
Now when s = 0 v = 40.
31log. (1600 + 6400) + C =0

C = —1log, (8000)
+4log, (v¥ + 80%) — % log, (8 000)

—100Iog, (v* + 802) + 100 log, 8 000

8 000
v? + 802)°

The particle is at rest when v = 0

100 log, (

8
s = lmloge%

= 100log, 2 m.

To find the time taken we reconsider the initial equation
acceleration = —v2/200 — 32,

0

dv_

1

; °v_ 2
ie. ar 200(1) + 6 400)
1 dv _ 1
v +80%dr 200
dv 1
J-UZ + 802 _2_00de
1 1 av

Whent = 0,0 = 40
1

0=C + —tan™!

80

Lol
g0 2% 3]

40
80

+]tn“1v
80 " g0

t—§ —tan~' |2} + tan ! ! s
) 80 2
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and when v=20

t St n~! ! s
= _ta —]s.
2 2
Example 2. A car is moving in a straight line and its acceleration is
given by k*(a — s), where s is the distance moved in time t seconds and

k and a are constants. If the car starts from rest, show that its speed v
is given by v* = k*(2as — s*). Hence verify that s = a(l — cos kt).
Acceleration = k%(a — )
dv

vy = k*(a —s)

fvdv =f k*a — s)ds

12 = C 4 k*as — §%/2)
and sincev = Owhens =0,C =0
. v? = k*(2as — 5?) A 1)
If s = a(l — cos ki) RN (11

d
v=a§=aksinkt

v? = a*k?sin? kt

= k*(a® — a® cos? ki)

= k*[a® — (a — 5)*] from (ii)

= k*[2as — s*]
which agrees with equation (i).
Example 3. If, at time t, the speed of a particle is given by v =
1/(A + Bt) (A, B positive), show that its acceleration is negative and
proportional to the square of the speed. If, initially, the acceleration is

— 1 unit and v = 40, find A and B. Hence find s, the distance moved, in
terms of t, the time, and find v in terms of s.

Since v =

3

A+ Bt

cceleration de —B
a ==
dt (A + Bt?

94



VARIABLE ACCELERATION
Combining these equations,

Acceleration = — Br?.

Thus the acceleration is negative and proportional to the square of
the speed.
Initially t = 0 and v = 40,

Also acceleration = —1 whent = 0
—B
I

Boaro L) o L
7 140/ T 1600

~ 1600
L_1+ L a0+
40 7 1600
ds 1600
dt ~ 40 + ¢

-1 =

—

.. (1)

s = 16001log, (40 + 1) + C.

Nows =0whent =0,.. C= —1600log, 40,

40 + ¢
40 |

s=160010ge( RO 1]

_ 1600
YT 2011
40v + vt = 1600
t_1600—400
v

From (i)

... (i)
40 + ¢t
40
40e¥' %% =40 + ¢
t = 40e%159° — 40, .. (1v)

From (ii) e¥/1600 —
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From (iii) and (iv)

— 4
(= LO0 80 _ ggesiisoo _ 4
v

40 — p = pesi1e00 _y

s/1 600

= 40

v = 4oe—s/1 600

ve

Exercises 5c

1. A particle starts from rest and moves in a straight line with an
acceleration of (t? + 3t) m/s?, where ¢ is the time at any instant.
Find its velocity and displacement at any time ¢, and after 6 seconds.

2. The acceleration of a particle moving in a straight line is
(12 — 3v?) m/s?, where v is its speed. If over a distance of 30 m, v
increases from u to 2u, find u.

3. A particle starts from rest and moves in a straight line with an
acceleration of (g — kv?), where v is its speed at any time t and g and
k are constants. Show that v? = g(1 — e~ ?*)/k, where s is the
distance travelled in time ¢. If the speed increases from V to 3V as s
increases from d to 2d, find an expression for k in terms of ¥ and g.

4. A car is travelling in a straight line so that the distance s and

(75 — v)? 75s
375 Also show that v St s
expression for ¢ in terms of s.

5. The magnitude of the acceleration of a particle starting from
rest and moving in a straight line is 16(1 — s/50), where s is the
displacement in time r. Find its greatest speed and the distance
travelled before coming to rest again,

6. A particle starts from rest at a point A and moves in a straight
line towards a point B, distance 800 m away, with an acceleration of
1/(s — 800)> m/s2. If s is the distance of the particle from 4, find its
speed v in terms of s. Hence show that the time taken to reach the

mid-point of AB is
400 _
20 f / (%—s) ds
0 N

and use the substitution s = 800 sin? 6 to evaluate this integral.

. 5
its speed v are connected by the relation s = 75—U Show that the

acceleration 1s and find an
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SIMPLE HARMONIC MOTION
5.6. SIMPLE HARMONIC MOTION

An important case of variable acceleration is that of a particle
moving with Simple Harmonic Motion.

Definition—When a particle moves so that its acceleration is
proportional to the distance it has moved along its path from a
fixed point O, and is directed towards O, the particle is said to move
with Simple Harmonic Motion (S.H.M.).

It is to be noted that simple harmonic motion applies not only to
motion in a straight line, but to any path the particle is traversing.
For example, if the particle is moving along a curve and the accelera-
tion along the curve is proportional to the arc length measured from
some fixed point on the curve.

For simple harmonic motion if s is the displacement from a point
O then,

Acceleration oc — s
d?s

F:—ns (l)

or

where n is some constant. Note that n? is used not only to simplify
subsequent formulae but also because n? is essentially positive and
maintains the negative sign.

The solution of equation (i) is mathematically always of the same
form whatever the path of the particle. For convenience we shall
consider motion in a straight line.

Referring to Figure 5.5

Acceleration = —n?s
dv
2
v— = —ns
ds
Jvdv = —nzfsds

30?2 = C — $n?s?
2 = C — n’s® (€ =20).

If s = a, when v = 0, C' = n?a?
' b
v? = n?a® — n%s?
ie. v? = n*a* — s?) ... ()
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From this equation, we see that v = Owhens® = a?,ie.s = +aor
—a. Also,since a®> — s? must be positive [otherwise we cannot find a
square root of a> — s?], the value of s must vary between +a and
—a. The particle oscillates between two extreme points A’ and 4,
distance a on either side of the fixed point O [refer to Figure 5.5]. ais
known as the amplitude.

- — — - — = g—-——— - — — — — ~ gq— — ——»
- ——-S— —
v i P o
A 0o P A
-—

acceleration = -n?s

Speed of Pis
n v{a?-sY towards Oor A

Figure 5.5

The maximum speed is that when s = 0, that is, at the point O and
Umax = ny/(@® — 0) = na.

The acceleration has its greatest magnitude when s = =a, that s,
at the extreme points A" and A and its magnitude is then na.
From equation (ii)
ds
2 2
— =nJa@> —s
T J( )

g 1
ds  nJ@® - s»

p= 1 f 4
Tl J@ —sY’
The solution of the integral is sin~ ! s/a and therefore,

.S
C+nt=sin"'-
a

where C is a constant to be found from the initial conditions. For
example, if the particle starts from O, then s = 0 when t = 0, and
therefore C = 0 and the equation becomes

s = asinnt.

If the time is measured from the time when the particle is passing
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SIMPLE HARMONIC MOTION
through B, the mid-point of OA4 then s = a/2 when t = 0 and

C =sin"'}
T Sn
c=" .
6 ' 6

C = m/6if the particle is at B but moving away from 0, and C = 57/6
if the particle is moving towards O.

In general, if when t = 0 the particle is at a distance d from O
(—a<d<a)then C =sin"'d/a = ¢say

s =asin(nt + &) ... (1)

Note from this result that by differentiating

v=9 = ancos (nt + g), v (iv)
dt
which is an alternative expression for v to that given in equation (ii), it
has the advantage of indicating the direction of the speed as well as its
magnitude.
If in equation (iii), we increase t to t + 2n/n,

s=asmjn|t+ —] +¢
n

= asin (nt + ¢ + 2n)
= asin(nt + &)

we obtain the same value of s and similarly from equation (iv) v has
the same value. This proves that after successive intervals of time
2m/n, the particle passes through the same position with the same
velocity,

2
ie. T=2" )
n

is the time for a complete oscillation, called the period of the motion.
Summarizing we have
§=—n%  (§=d2s/dt?)
UZ — n2(a2 _ SZ)

s = asin(nt + ¢

v = ancos (nt + &)
_2n

T
n
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In the solution of problems involving S.H.M. itis usually necessary
to find n and g, and then solve the problem.

Example 1. A particle is moving in a straight line with S.H.M. whose
amplitude is 6 m and whose period is 10 s. Find the maximum speed and
the speed when the particle is 3 m from the central position.

The period is 10's

2
10

n
_271.’

Also the amplitude is given as 6 m
and v =n/(@® — 5%

2n 2
The maximum speed is when s = 0.
2n
=-—"./36
Umax 10\/3_‘
= 3770 m/s.

When the particle is 3 m from the centre s = +3,

2n

= —(13)2

b= 15V/36 — (23]

2n

=3
1033

= 3264 m/s.

Example 2. A particle moving with S.H.M. has speeds of 32 m/s and
24 m/s when its distances fromthe centre of oscillation are respectively
3m and 4 m. Find the periodic time of the motion.

2 = n¥(d® — 5?)
s 322 =n*a®> - 9) U )]
and 24% = n%(a* — 16) ... (i)
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SIMPLE HARMONIC MOTION

dividing equations (i) and (ii) we have

2 -9
242 a®> — 16
ie 1_6=—a2—9
- 9 a®> — 16
16a% — 256 = 9a*> — 81

a* =25

The amplitude is Sm. Substituting we have
24% = n?(25 — 16)
64 = n?
8=n

periodic time is 27/8 or n/4 seconds.

Example 3. A particle is moving with S.H.M. of period 2n/n, amplitude
a, and centre of oscillation 0. Whent = Q it is at a distance a/\/z from
O, and when t = n/24 it is a distance a\/§/2 from O. Find n (four
values). Using the positive values of n, find the speed whent = —n/24
and show that there are two possible values of &. Draw diagrams to

illustrate the two cases.

For S.H.M. of period 27/n and amplitude a
s = asin(nt + &).

When t=0, s——-—a—
NG
a .
—— =gsing
N
. 1
sing = —~
/2
s=g or 3%.

Case ¢ = n/4

s si t+n
= asin |nt + ~
4
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s a/3

but when t = TR s = Tf
aQ/E = asm(nl E)

2 24 4

é = sin (n~ E)

2 24

T T T 2r

"5 T3 0 3
i T Sn
"a=1 7 1»

n=2 or 10

Case ¢ = 3n/4

= asi t+37I
S=asmin 4

3
when t:i s=%»

n— + 3 _ or 27—[
24 4 3 3
m__F T
24 12 12
—10 or -2

Only positive values of n are to be considered, therefore these two
cases are inadmissible.

Two cases are left:

S = asin

2t + i i
- or asin
4

7T
10t + —
+4)
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‘SIMPLE HARMONIC MOTION
when t = —n/24

s = asi 27T+7I sin 1—0—7[+E
= gsin 5 tal or a 54 T
T
6
=3 o T3

Similarly the velocities are given by

. T .
=asm€, or asmm

v = ancos (nt + &)

that is v = 2acos (21? + E) or 10acos (IOI + g)

4
solving when t = "
& =24
v=a, or —5a
T
when t= ——
24

v=ﬁa, or —5./3a.

Gathering the results into a tabular form we have

n=2 n=10
t s v t s v
n L a
o 22 -sva
a
0 — 2a 0 5V 2a
7 V2 V2

Sil=

24 2 24

o

a2
o
S
a3
SIS
(%)

which are illustrated in Figure 5.6.

Example 4. A particle P describes a circle, radius a, with constant
angular velocity o rad/s AA' is any diameter of the circle and Q is the
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foot of the perpendicular from Pto AA'. Show that the point Q moves
with S.H.M. along AA' about O the centre of the circle.

ns2 Velocities 3¢ Jia a
= — — —
[N = 1 i | S|
. 3 {30
Distances 5 ﬁ =
i --..11 = :1
Times t= 2% t=0 t e
n=10
Velocities -5/3¢ 5/2a -5a
—-—— — -
L 1 % 1 1 J
. a a /30
Distances e iy -
Times r:-%— -~ t=0 t:;'—L
Figure 5.6
wa
w P
Vi B(t=0)
wt
€
A' O¢—-X-’Q
Figure 5.7

Let ¢ be the time in seconds and OQ = x. Let B be the initial
position of P when t = 0 and / BOA = ¢ (refer to Figure 5.7).

Since P is moving with angular velocity w the angle PO B described
in any time ¢ 1S wt.

/ POA =/ POB + / BOA
= wt + &

The velocity of P is of magnitude aw tangential to the circle, that is,
perpendicular to OP.
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SIMPLE HARMONIC MOTION
Speed of Q(v) = Resolved part of aw parallel to AOA’
= awsin POA’
= wPQ
v = w/(a®> — x*) by Pythagoras
2

v? = 0@ — x?)

and this shows that Q is moving with S.H.M. because differentiating
this expression with respect to x.

dv
20— = —2w%x
dx
or acceleration = —w?x ()
ie. acceleration oc — x.

Note. Inthis special case the general constant of proportionality n
becomes wtheangular velocity of P. Oisthecentre ofthe motionand
A and A4’, the limiting points.

Exercises 5d

1. A particle is moving with S.H.M. of amplitude 1-3 m and its
periodic time is 5s. It passes through its central position at time
t = 0. Find its acceleration and speed when itis (a) 0-5m(b) —1-2m
from O.

2. A particle is moving in a straight line with S.H.M. about a point
O. Find the time of a complete oscillation when
(@) magnitude of its acceleration at 3m from O is 6 m/s2,

(b) magnitude of its acceleration at 4 cm from O is 16 cm/s?,
(c) magnitude of its acceleration at 1 cm from O is 4 m/s%.

3. A particle moving in a straight line with S.H.M. has speeds of
magnitudes 8 m/s and 6 m/s, in the same sense at distances 3 m and
4 m, measured in the same direction, respectively, from its central
position. Find the period, amplitude and maximum acceleration of
the particle.

4. A particle is moving with S.H.M. of period n/2 seconds, and its
maximum speed is 12 m/s. Find its amplitude, and its speed at a
distance 1 m from the central position.

5. A point is moving in a straight line with S.H.M. Its speed when
moving through its mean position is 12 m/s, and the magnitude of
the acceleration at a point 3 m from the mean position is 6 m/s%.
Find its amplitude and periodic time.
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6. The amplitude of a particle moving with S.H.M. is 15m and
the speed at a distance of 9 m from the mean position is 6 m/s. Find
the maximum speed of the particle and its speed when 12 m from
its mean position.

7. A particle P is moving with S.H.M. of amplitude a and periodic
time 2n/p. The time ¢ is measured from the instant when P is at an
extreme point. Show that the distance x from the mean position is
given by x = a cos pt.

8. Prove that a particle whose displacement, x, is given by

x = acosnt + bsinat, is moving with SH.M. {Hint: show that
2

. . . . x >
x = acosnt + bsin nt is a solution of the equation T —n*x.]

If a=4, b=3 and n =1, find the amplitude of the motion
and the maximum speed.

9. A particle is moving in a straight line A’POQA with S.H.M.
where O is the mid-point of the line and P and Q are two points 6 cm
on either side of 0. The particle passes P, then 4 s later passes Q. It
continues to 4 and returns to  in 4 more seconds. Find the period
and the amplitude of the oscillation.

10. A particle is moving with S.H.M. of period 12z seconds and
amplitude 8 m. B is 4 m from the mean position. The particle
passes through the mean position O in the direction OB at time
t = 0 and makes 1 oscillation. Find the times at which the particle
is at B during this oscillation. If the particle had been passing
through O, in the direction away from B, at ¢ = 0, what would have
been the time at which the particle was next at B?

EXERCISES 5*

1. A particle starts from rest at 4 and moves to B with uniform
acceleration. In the last two seconds of its motion it describes
seven-sixteenths of the whole distance and in the first second it
describes 3 m. Find the distance from A to Band how long the point
took to travel from 4 to B.

2. Abody moves for 5 seconds with constant acceleration in which
time it travels 95 cm. The acceleration then ceases and in the next
5 seconds it travels 170 cm, find its initial velocity and acceleration.

3. A particle moves 13 m in the first second and 43 m and 83 m in
the fourth and eighth seconds. Are these distances consistent with
the supposition that it is moving with constant acceleration?

* Exercises marked thus, ¥, have been metricized, see Preface.
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4. A particle moves so that its acceleration is equal to —n’x + C,
describe the motion n, C being constant and x its distance from a
fixed point O. [Hint:let y = x — C/n?]

5. The acceleration of a train starting from rest is given by
(33/v — 1)m/s?, where v is its speed in metres per second. If it
is moving in a straight line, find an expression for the time ¢ in terms
of v. Calculate the greatest possible speed of the train and the time
taken to acquire two-thirds of that speed.

6. A train moving in a straight line starts from A with uniform
acceleration of 0-1 m/s2. After it has attained full speed it moves
uniformly for 10 min. It is brought to rest at B by the brakes, which
apply a constant retardation of 0-8 m/s? for 20 s. Draw a speed-time
curve and from it find the time of the journey and the distance from 4
to B.

7. The speed of a particle moving in a straight line is equal to
k/\ﬁ where k is constant and s is the displacement. Prove that the
acceleration is equal to Cv* and find C in terms of k.

8. A motor car starts from rest with a uniform acceleration of f.
After a certain time the acceleration ceases and it experiences a
uniform retardation of 3f, until brought to rest. If the total distance
described is d, and the total time taken is T, prove that d = 3f T?%/8.

9. Two particles move along a straight line starting at the same
time from the same point 4. The first moves with a constant speed of
10 m/s and the second starts from rest with a constant acceleration
of 2 m/s. They meet again at the point B. Draw a speed-time graph
of the motion of the two particles and from it find the distance AB.

10. Thespeed of a body is observed at one second intervals to be as
follows:

tseconds | O 1 | 23| 4] S

vm/s 4133|56|69|60]| 29

Draw a speed-time curve of the motion and estimate the total
distance travelled and the average speed during the run.

11. A particle with a speed of 120 cm/s starts to decelerate at a
constant rate. Ten seconds later another particle starts from rest
with a constant acceleration. After the second particle has travelled
337-5cm the speeds of the two particles are both 45cm/s. Draw a
speed—time graph of the two motions and find when the first particle
is at rest and the velocity of the second particle at that instant.
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12. The acceleration of a particle is equal to g sin x/a. Find its
maximum velocity if v = 0 when x = 0 and a is a constant.

13. A particle oscillates with S.H.M. between two points A and B
which are 8 m apart. Its speed at O, the mid-point of 4B is 14 m/s.
What is its speed and the magnitude of its acceleration at a point 3 m
from 0?

14. A body floating in the sea oscillates up and down with the
waves with SH.M. It rises a vertical distance of 16 cm and falls a
distance of 16 cm from its mean position in a periodic time of
4 seconds. Find its greatest speed and greatest acceleration.

15. A particle rotates with constant angular acceleration a (so
that d%6/d:* = « constant). Derive a set of equations for uniform
angular acceleration similar to those already obtained for uniform
linear acceleration.

A point moving in a circle with uniform angular acceleration
describes angles 6, and 8, in successive time intervals t; and t,.
Show that the angular acceleration is 2(t,0, — £,0,)/tt,(t; + t3)
and find the angular speed at the beginning of the first interval
At what time before the start of the first interval was the particie
at rest?

16. A flywheel is being brought to rest by a constant retarding
torque. The flywheel is observed to do n, revolutions in the first
half-minute and n, revolutions in the next half-minute. Find
(a) the angular retardation of the wheel, (b) how many more revolu-
tions the wheel does before coming to rest. (London)
[Note. Constant torque produces constant angular acceleration.
Also refer to previous question.]

17. Draw the speed—time curve of a particle moving in a straight
line with initial ve1001ty u uniform acceleration f for t seconds
Deduce the formula v? = u? + 2fs.

18. A particle has speed v after travelling distance s. Explain
briefly how the time taken from distance s, to distance s, could be
found from the graph obtained by plotting 1/v against s.

The observed speeds of a vehicle when the front bumper is at
different distances from a mark on a straight road are given by the
following table:

Distance (m) | 0 | 20 | 40 | 60 | 80 | 100| 120

Speed (m/s) | 167| 179] 19-05] 20-4| 22:2] 24-1{ 263

Find the approximate time taken by the vehicle to travel the
distance of 120 m.
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State briefly how the acceleration at 100 m could be estimated
from these data. (London)t

19. Two railway stations A and B are 6 km apart. A train passes
A at 40 km/h, maintains this speed for 5km, then decelerates
uniformly coming to rest at B. A second train, starting from rest
at A 2 min before the first passes A, accelerates uniformly for a time
at 10km h~ ' min~?, then decelerates uniformly coming to rest at
B simultaneously with the arrival of the first train. Sketch the two
velocity—time graphs, using the same axes for both.

Show the second train takes 12§ min for the journey and find
its maximum speed and its deceleration in kilometres per hour per
minute. (London)t

20. Acyclisttravelling at 8 m/s observes a motor car just beginning
to accelerate uniformly away from rest 40 m distant. If the cyclist’s
speed remains constant, he can just catch the motor car. Find the
acceleration of the car. If he had been cycling at a steady speed of
6 m/s, how near would he have got to the car?

21. A car X, moving with constant acceleration, is travelling at
30km/h as it passes a fixed point 4. After travelling a further
quarter of a kilometre the car reaches a speed of vkm/h and is
thereafter driven at this speed. Six seconds after X passes A another
car Y, travelling at 45 km/h in the same direction on the same road
and accelerating at 5 m/s2, also passes 4. On reaching a speed of
75 km/h, Y is thereafter driven at this speed. Y passes X 1 km beyond
A. Prove that the time taken by Y to cover the kilometre beyond A
is 59 seconds.

Calculate the value of v. (London)t

22. A particle falls from rest at a point A under gravity. After
it has fallen a distance d, another particle is given a downward speed
/8ga from the same starting point 4. Show that the two particles
collide. Find the time and distance from A4 at which they collide.

23. Two cars start from rest at the same point and travel in the
same direction. The first, accelerating uniformly, acquires a speed
of 20 km/h in 4 seconds and then maintains this steady speed. The
second car starts 2 seconds after the first and accelerates uniformly
at 33kmh~'s~ !, Draw the velocity-time graph for each car.

Find the time during which the first car is in motion before being
overtaken by the second and the distance in metres then travelled by
either car.

Find also the times, measured from the start of the first car, when
the two cars have a relative speed of 12 km/h. (London)t

24. The maximum acceleration of a train is f;, the maximum
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deceleration is f; and the maximum speed is v. Find the shortest
time taken to travel a distance s from rest to rest

2fif

(fi + fo’
21, (London)

25. A bus-stop is situated 133 m from the intersection of two
straight roads at right angles. A bus passes the stop at a speed of
1 m/s and turns left at the junction, accelerating throughout at
% m/s%. Aboy, starting from the bus-stop as the bus turns the corner,
runs at a uniform speed in a straight line and catches the bus at
a point 462 m from the junction. Find his speed in metres per
second to 3 significant figures.

With what uniform speed would he have had to run along the
roads in order just to catch the bus? (London)t

26. A particle moves in a straight line against a resistance which
varies as the cube of the speed. Prove that the distance travelled in
during this time with its speed at the mid-point of the distance
any time is the same as if the particle were to move uniformly

(Oxford)

27. A particle describing simple harmonic motion in a straight line
reaches its maximum speed at a point O and is momentarily at
rest at a point A distant 4a from O. B is a point on OA such that
OB = a. C is a point on BA such that the speed at C is half the
speed at B. Show that the acceleration at C is three and a half
times that at B.

The least time taken from B to C is one second. Find the period
of the motion correct to one-tenth of a second. (London)

28. Two engines, A and B, travelling on parallel rails in the same
direction with uniform accelerations f and 3 f respectively, simul-
taneously pass a signal box P with speeds u and ju respectively.
The engines are once again level when they pass the next signal
box Q, and they immediately brake with uniform declerations f and
F respectively, to stop at the same station.

(a) Show that the greatest distance 4 gets ahead of B is u?/4f.

(b) Find the speeds of the engines as they pass the signal box Q
and the distance PQ.

(c) Show that F:.f = 49:36. (W.JLE.C)

29. A particle moves in a straight line in such a way that its
acceleration is directed towards a fixed point O on the line and is
equal to w? times its distance from 0. By considering the velocity,

when @ s <

b) s >
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show that the motion is oscillatory and that the time of a complete
oscillation is 2m/w.

Such a particle moves so that its speed is 12 cm/s when its distance
is4 cm from O and 9 cm/s when its distance is 7 ¢cm from O. Find

(a) the period, in seconds, of a complete oscillation,

(b) the speed, in centimetres per second, when the particle is 8 cm

from O,
giving both results correct to three significant figures. (London)t

30. A point P describes a circle of centre O and radius r with
uniform angular velocity w. @ is the foot of the perpendicular
from P upon a fixed diameter of the circle. Find the velocity and
the acceleration of Q when it is a distance x from O.

A particle is describing simple harmonic motion in a straight line.
Its speeds at distances 2, 3 and 5 m from a point 4 in the line are
0, 4 and 2 m/s respectively. Find the distance of the centre of the
motionfrom 4. Find alsotheamplitude, periodic time and maximum
acceleration of the motion. (London)t

31. The position vector of a particle with respect to the origin at
time ¢ is r = asin pti + 2acos ptj + acos ptk. Another particle is
describing simple harmonic motion with period 2n/p between the
points +aj, and when r = 0, its acceleration is —ap?j. Show that
the magnitude of the relative velocity of the particles is greatest
when they are closest together. (London, part)
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FORCE

6.1. MOMENTUM

Definition—The momentum of a particle is the product of its mass
and its velocity, i.e. if a particle of mass m is moving with velocity v,
its momentum is the vector quantity mwv.

SI unit of momentum ... kg m/s

Example. Find the momentum of a particle of mass 5kg moving
horizontally at 20 m/s in a north-easterly direction.

The momentum of the particle is in the same direction as the
velocity and of magnitude 5 x 20 = 100 kg m/s.

If i, j are horizontal unit vectors east and north respectively,
then we could express this momentum in the form

mv—SEi—l—&')
2T A

= 50\/§(i + ) kgmy/s.

6.2. FORCE

In 1687, Sir Isaac Newton in his famous work Principia laid the
foundations of Newtonian Mechanics.* The first two of his laws
of motion can be stated in modern terms as follows:

1. Every body continues in its state of rest or with uniform
momentum unless acted upon by an external force.

2. The rate of change of momentum of the body is directly
proportional to the applied force and takes place in the direction
of that force.

* When bodies move at speeds comparabie with the speed of light, Newtonian
Mechanics, used in this book, breaks down. A new system of mechanics, based on the
Theory of Relativity, was developed at the beginning of this century. There is close
agreement, however, between the two systems for bodies moving at ‘ordinary’ speeds.
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Thus Newton suggests that the force on a body is to be measured
in terms of the rate at which its momentum changes.

Also it is implied that each force has its own effect. This is
equivalent to stating that the effect of several forces is the same as
that of their resultant found by successive application of the triangle
rule. (That this is necessary, if we are to treat force as a vector
quantity, was indicated in Section 2.1.) The justification for this
assumption for forces is that it works in practice.

Definition—The resultant force acting on a particle is a vector
quantity equal to the rate of change of momentum, i.e., the force P
is given by

P = d(mv)/dt.

SI unit of force . .. kg m/s? or newton (N).

6.3. FORCE AND ACCELERATION

The particles met with in this book are of constant mass. For such
particles

P = d(mv)/dt
= mdv/dt
P =mf

This will be the basic equation used in determining the motion in
many of our problems.

Example 1. A particle of mass 2 tonne is moving in a straight line
with an acceleration of 12 m/s?. Find the resultant force acting on it.

12m/s?
-—’——

O— ~p
2000 kg
Figure 6.1

Since P = mf, the force will be in the same direction as the
acceleration (refer to Figure 6.1), and

P =2000 x 12
= 24000 N.
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The resultant force acting on the particle is of magnitude 24 000 N
and in the direction of the acceleration.

Example 2. A constant force of 60 N is 'applied to a particle of mass
Skg. Find the acceleration it produces.
If the particle starts fromrest, find the speed acquired in 10 seconds.

rest f
| - |
bm——————— O .
{ 5 kg 60 N |
e — e — 0 ——— == — = e = —l

Figure 6.2

Since P = myf, the acceleration will be in the direction of the
applied force (refer to Figure 6.2), and

60 = 5f.
f = 12m/s%
The force being constant, the acceleration will be constant and
v=u+ft
v=0+12x 10
= 120 m/s.

The acceleration produced is of magnitude 12 m/s* and in the
direction of the force. The particle acquires a speed of 120 m/s
in 10s.

4LN
f
o
AN
80°\\
2kg 6N
Figure 6.3

Example 3. A particle of mass 2kg is moving under the action of
two forces. They are of magnitude 6 N and 4 N acting at 60 degrees
to each other. Find the acceleration of the particle.
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Let the resultant acceleration of the particle be of magnitude f
making an angle 0 with the 6 N force. (Refer to Figure 6.3.)
Since P = mf,

perpendicular to the 6 N force 4sin60° =2 x fsinf
parallel to the 6 N force 6 +4cos60° =2 x fcosb.
From these two equations
fsinf = /3, )
fcosl = 4. ... (1)

Squaring and adding (i) and (ii)

=y e
=19

R f = 4359 m/s%

Dividing (i) by (i1)

tan 6 = \/3/4

= 0433 and sin @ is positive
0 = 23°25.

The acceleration of the particle is of magnitude 436 m/s? in a
direction making an angle of 23° 25’ with the 6 N force. (Note that
this result could equally well have been obtained by finding the
resultant force and then applying P = mf))

EXERCISES 6

1. Arifle bullet of mass 10 g is moving horizontally with an accelera-
tion of 1-6 x 10° m/s2. Find the resultant force acting on it.

2. A particle of mass 160 kg is acted upon by a single force of
magnitude 640 N. Find the acceleration produced.

3. Theresultantforceacting ona particleis 960 N. Itsacceleration
is 6 m/s2. Find the mass of the particle.

4. A particle of mass 1kg moves in a straight line under the
action of a single force F. F is of magnitude 8s N where s metres
is the distance of the particle from a fixed point O in the line, and is
directed towards O. Find the acceleration of the particle when it is
8 cm from O.

How would you describe the motion of this particle?
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Example. A stone of mass 2 kg lies on the ground. With what force
is it being pulled by the Earth?

The weight of the stone,
| W = mg
=2 x 98
= 19-6 N.
This is the force exerted by the Earth on the stone.

7.3. HOOKE’S LAW
(for a spring or elastic thread)

When a spring is stretched, the spring pulls back with a force called
the tension in the spring. Experiments show that the magnitude (7)
of this tension is, within certain limits, directly proportional to the
fractional extension of the spring.

ie. T=21xx/l

where x is the extension of the spring, [ its unstretched length.

The constant of proportionality 4 has the dimensions of a force
and is called the modulus of the spring. It has different values for
different springs.

A similar law applies to springs in compression and to elastic
threads.

Example. An elastic thread of modulus 10 N is 2 m in length when
unstretched. Find the tension in the thread when it is stretched to a
length of 3m.

The modulus of the thread is 10 N and the extension is 1 m.
Hence by Hooke’s law the tension

T = Ax/l)
=10(3)
T=5N

Note that if a string is inelastic then Hooke’s law does not apply,
though there will of course be a tension in the string as long as it is
tight.

If a string is light and passes over smooth contacts, then the
tension will have the same magnitude throughout its length. For a
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Let the resultant acceleration of the particle be of magnitude f
making an angle 0 with the 6 N force. (Refer to Figure 6.3.)
Since P = mf,

perpendicular to the 6 N force 4sin60° =2 x fsin6
parallel to the 6 N force 6 +4cos60° =2 x fcos 0.
From these two equations
fsin = /3, ... ()
fcosB =4, .. (i)

Squaring and adding (i) and (ii)

fP= 3+ e
=19

L f = 4359 m/s2.

Dividing (i) by (ii)

tan @ = \/3/4

= 0433 and sin § is positive
0 = 23° 25"

The acceleration of the particle is of magnitude 4-36 m/s? in a
direction making an angle of 23° 25’ with the 6 N force. (Note that
this result could equally well have been obtained by finding the
resultant force and then applying P = mf)

EXERCISES 6

1. Arifle bullet of mass 10 g is moving horizontally with an accelera-
tion of 1-6 x 10° m/s?. Find the resultant force acting on it.

2. A particle of mass 160 kg is acted upon by a single force of
magnitude 640 N. Find the acceleration produced.

3. Theresultantforceacting ona particleis 960 N. Itsacceleration
is 6 m/s%. Find the mass of the particle.

4. A particle of mass 1kg moves in a straight line under the
action of a single force F. F is of magnitude 8s N where s metres
is the distance of the particle from a fixed point O in the line, and is
directed towards 0. Find the acceleration of the particle when it is
8 cm from O.

How would you describe the motion of this particle?
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5. A 1000kg car moves along a road under the action of a
constant net force of 5000 N. Find its acceleration and the time
taken to travel 3 m from rest.

6. A 1000kg trailer is being towed along a level road against
horizontal resistances totalling 700 N. The tow rope, also horizontal,
can withstand tensions of up to 3000 N. If no other forces affect
the horizontal motion, find the maximum acceleration that can be
imparted to the trailer.

7. The only two forces acting on a particle are equal in magnitude
and opposite in direction. What can be said about the motion of
the particle?

8. A particle of mass 3 kg moves under the action of two forces
of 2N and 4 N which act at 60 degrees to each other. Find the
components of the acceleration of the particle which are parallel
and perpendicular to the 4 N force.

9. Three forces of 160, 320 and 416 N act in one plane on a
particle. The angle between any two of them is 120 degrees. If the
mass of the particle is 56 kg, find the acceleration these forces
give to it.

10. A particle of mass 4 kg is acted upon by a force 32i + 64j N.
Find the acceleration it produces.

11. A particle of mass m moves so that at time ¢ its velocity is
t?a + b, where a and b are constant vectors. Find the resultant
force acting on it at time ¢.

12. A particle of mass m is moving under the action of a single
force. Its position vector with respect to the origin at time ¢ is

r = asin pti + 2acos ptj + acos ptk.

Show that the particle is moving in a plane and find an expression
for the force acting on it. (London, part)
13. A particle of mass 2 kg moves so that after ¢ seconds it has a
displacement of (cos 2t)i + (sin 2t)j m from a fixed point. Find the
magnitude of the resultant force acting on it at time ¢, and verify
that the force is always at right angles to the direction of motion.
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7.1. INTRODUCTION

So far, quantities (such as speed, acceleration, force etc.) have been
defined to describe the motion of a particle. Practical problems,
however, may involve not only the description of its motion but the
prediction of future behaviour. Given the mass of the particle and
the initial conditions then, provided the forces acting are known,
this prediction can be made. (See, for example, Example 2, Section
6.3.) So we need to know the forces which act in different situations.

Scientists provide this information in the form of physical laws
which are the result of observation and experiment. Some of the
laws relevant to the work in this book are discussed in the sections
that follow. ‘

7.2. GRAVITATION

From observations of astronomical bodies and of bodies on Earth,
Newton deduced that every body attracts every other body with
a force called gravitational attraction.* This force due to the
gravitational attraction of the Earth is called the weight of the body.
Near the Earth’s surface the magnitude of this weight (W) is found
to be directly proportional to the mass (m) of the body

W=gxm

The constant of proportionality g (the same for all bodies) is called
the local gravitational constant. 1t varies a little over the Earth’s
surface but it is approximately 9-8 m/s?; g has the dimensions of
an acceleration and is, in fact, the acceleration of a particle in free
fall near the Earth’s surface, hence it is often called the acceleration
of gravity.

* Newton’s universal law of gravitation states that the magnitude of the gravitation-
al attraction F between two bodies of mass, m,, m,, distance r apart, is given by
F = m,m,/Gr? (G being the universal gravitation constant). In the case of a body on
the Earth’s surface its weight will be W = mE/GR? (E the mass of the earth, R its
radius) = mg since E/GR? is approximately constant over the Earth’s surface.
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Example. A stone of mass 2 kg lies on the ground. With what force
is it being pulled by the Earth?

The weight of the stone,
: W = mg
=2 x 98
= 196 N.
This is the force exerted by the Earth on the stone.

7.3. HOOKE’S LAW
(for a spring or elastic thread)

When a spring is stretched, the spring pulls back with a force called
the tension in the spring. Experiments show that the magnitude (T)
of this tension is, within certain limits, directly proportional to the
fractional extension of the spring.

ie. T=21xx/l

where x is the extension of the spring, ! its unstretched length.

The constant of proportionality 4 has the dimensions of a force
and is called the modulus of the spring. It has different values for
different springs.

A similar law applies to springs in compression and to elastic
threads.

Example. An elastic thread of modulus 10 N is 2 m in length when
unstretched. Find the tension in the thread when it is stretched to a
length of 3 m.

The modulus of the thread is 10 N and the extension is 1 m.
Hence by Hooke’s law the tension

T = Ax/l)
= 10()
T=5N.

Note that if a string is inelastic then Hooke’s law does not apply,
though there will of course be a tension in the string as long as it is
tight.

If a string is light and passes over smooth contacts, then the
tension will have the same magnitude throughout its length. For a
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small length it will have negligible mass and, if T}, T, are the tensions
atits ends, P = mf gives T, — T, = 0. This will hold whether the
string is at rest or in motion.

7.4. FRICTION
When a body A is in contact with another body B, they exert forces
on one another. In particular, B will push 4 with a force that can
be regarded as made up of two components : a component along the
common tangent of the surfaces in contact, called the frictional
reaction, and a component perpendicular to the surfaces, called
the normal reaction. (Refer to Figure 7.1.)

b Normal reaction

A

Friction ‘*r—__l
B

Figure 7.1

If no attempt is made to slide one surface over the other, or if the
surfaces are smooth, the frictional component is of zero magnitude.
If, however, such an attempt is made, the friction is not zero and
its direction is such as to oppose the tendency to slide. Experiments
show that the friction will increase to prevent sliding up to a
maximum or “limiting” value and then sliding begins.

Itis found that the magnitude (F,,,,) of this limiting frictional force
is directly proportional to that of the normal reaction (N), ie.

Fmaxzﬂ X N'

The constant of proportionality u is dimensionless and is called
the coefficient of friction. 1t has different values for different pairs

of surfaces.
Total reaction\f ¢

Figure 7.2

An alternative way of expressing this law is obtained by con-
sidering the behaviour of the resultant of the friction and the normal
reaction. This force is called the total reaction between the two
surfaces. (Refer to Figure 7.2))
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If ¢ is the angle between the total reaction and the normal to
the surfaces, then as the friction increases, ¢ will increase up to a
maximum A (say) when sliding will begin. 1 is called the angle of
friction. (It is left to the reader to show that tan 4 = p.)

Note that it is an important point that friction opposes relative
motion between the surfaces. For instance, as a conveyor belt
starts up, a frictional force arises between the belt and a box on it
so as to move the box along with the belt.

In practice, when sliding begins there is a slight drop in the
magnitude of the frictional force. So there are two coefficients of
friction : the coefficient of statical friction (i, say) and the coefficient
of sliding friction (u,) and p; > p,. In problems in this book the
reader should assume that the values of u (or 4) quoted are the
appropriate ones for the situations described.

7.5. NEWTON’S THIRD LAW OF MOTION

This can be stated in the form. Whenever a body A exerts a force
on a body B, then B exerts an equal and opposite force on A.

The pairs of forces to which the law applies might, for example,
be the forces between electrostatic charges, the gravitational
attractions between bodies or the forces which arise between bodies
which come into contact. Some examples follow. (It should be
noted that the equal and opposite forces do not *“cancel each other
out”: indeed each force contributes to the motion of the particle
to which it is applied.)

. o ?w 7\®®\
m !
(@) (b) (c)
Figure 7.3

Figure 7.3a shows the repulsive forces between like electrostatic
charges. The forces will be equal whatever the magnitude of the
charges and will cause them to fly apart (provided no other forces
intervene).

Figure 7.3b shows the gravitational forces between a particle
and the Earth. The particle will, if free, fall towards the Earth under
its weight W, and the Earth will be attracted by an equal force W.

Figure 7.3c shows the impulsive reactions between colliding
particles. These will be equal whatever the masses of the particles.

120



NEWTON’S THIRD LAW OF MOTION

In Figure 7.4a the forces between a box and a table are shown.
Since they are at rest the force N on the box is balanced by its weight,
while the force N on the table, together with its weight, is balanced
by reactions from the ground.

AN Girecti
' o Direction of

pu—

tion
Tz ,;Ij w ™
"N ] L ;w J
N

(a) ¢-D)] (¢)
Figure 7.4

Figure 7.4b shows similar forces acting between a box and a lift.
In this case, however, if the lift accelerates upwards the force N’
on the box will be greater than its weight, while there will be a large
tension in the lift rope to overcome the weight of the lift and the
force N’ acting downwards on it.

Figure 7.4c shows the forces between a box and a plank on which
it is sliding. If the box is accelerating, it must be because it is being
pulled by a force greater than the friction uN, while, if free to do so,
the plank will move in the same direction under an equal and
opposite force uN.

Summarizing we have that the forces that can act on a particle
include its weight, tensions or thrusts in rods, strings etc. and the
reactions between surfaces in contact. Concerning the magnitude
of these forces we have seen that:

near the Earth’s surface W = mg,
in a spring or elastic thread T = (x/),
between rough surfaces F < uN (¢ < 4),

and if two bodies interact the forces between them are equal and
opposite.

With this information we can now decide what forces will act
on a particle in a given situation.
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Example 1. A particle of mass 7kg is rotating in a horizontal circle
on the end of an inelastic string. Indicate, on a diagram, the forces
acting on the particle and any physical laws that apply.

7kg

Refer to Figure 7.5.
For a particle near the Earth’s surface

W = mg,
W =7gN.

(This is usually written directly on to the diagram.)

Example 2. A particle of mass 5kg lies on a smooth plane inclined
to the horizontal. It is attached to the end of an elastic string the
other end of which is fastened to a point higher up the plane. The
string, of modulus 100 N and natural length 2 m, is extended to a
length of 3 m. Indicate, on a diagram, the forces acting on the particle
and any physical laws which apply.

5g N
Figure 7.6

Refer to Figure 7.6.
The modulus of the thread is 100 N and its extension is 1 m.
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NEWTON’S THIRD LAW OF MOTION

Hence by Hooke’s law

T = i(x/l)
= 100(3)
T =50N.

Example 3. A particle of mass 8 kg lies at rest on a rough inclined
plane. Indicate the forces acting on the particle and any physical
laws that apply.

N

8 kg

l 8g N
Figure 7.7

Refer to Figure 7.7.
As the particle is not about to slip F < uN.

Example 4. A particle of mass m slides down the rough inclined face
of a wedge, which is free to move on a smooth horizontal surface.
The mass of the wedge is M and the coefficient of friction between
particle and wedge is y. Indicate, on two diagrams, the forces acting
on the particle and the forces acting on the wedge, giving any physical
laws that apply.

N .
/ {7 ) M

mg

Figure 7.8 Mg

Refer to Figure 7.8.
Since the particle is sliding down the wedge F = puN.
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Exercises 7a

Draw diagrams to illustrate each of the situations described as
follows : Indicateclearly all the forces acting on the particle mentioned
and any physical laws which apply.

L. A particle of mass 3 kg hangs on the end of a spring. The
modulus of the spring is 6 N, its natural length is 4m and it is
extended by 2 m.

2. A particle of mass 5kg is pulled along a smooth horizontal
surface by a force of 13 N acting parallel to the surface.

3. A particle of mass 3 kg is describing horizontal circles on the
inside of a smooth hemispherical bowl fixed with its rim horizontal.

4. A particle of mass 2 kg is about to slip on a rough horizontal
plane when pulled by a horizontal force Q. The coefficient of (static)
friction between the particle and the plane is 1/2.

5. A particle of mass & kg has been projected horizontally so that
it now slides along a rough horizontal plane. The angle of friction
between the particle and plane is 30 degrees.

6. A particle of mass 2 kg describes horizontal circles on the end
of an elastic string (modulus 980 N, unstretched length 50 cm). The
string is inclined at 60 degrees to the vertical and is stretched to a
length of 52 cm.

7. A particle of mass m is in the form of a small smooth ring
attached to the end of an inextensible string of length . The ring
is threaded on a circular wire, of radius r, fixed in a vertical plane.
The other end of the string is fastened to the topmost point of the
wire and the ring is in equilibrium with the string taut (I < 2r).

8. A particle of mass m lies on a rough plane inclined at an angle
0 to the horizontal. It is just prevented from slipping down the
plane by a force Q acting parallel to the plane. The coefficient of
friction between particle and plane is pu.

9. A particle of mass 3 g lies at rest on a rough horizontal table
and is connected by a light inextensible string passing over a smooth
pulley at the edge to a mass of 2 g hanging freely. (Show the forces
acting on both particles.)

10. On a smooth fixed plane inclined at 45 degrees to the hori-
zontal, a smooth wedge of mass 7 kg and angle 45 degrees is placed
so that its upper face is horizontal. A particle of mass 3 kg is placed
on this horizontal face and the wedge begins to move. (Show the
forces acting on both particle and wedge.)

Further practice may be obtained by carrying out the same process
with the situations described in the exercises of Chapters 8-11.
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7.6. SUGGESTED APPROACH TO PROBLEM SOLVING

The following systematic approach can be of help in solving many
problems concerning the motion of particles.

(a) Read the question carefully and draw a clear diagram of the
situation described.

(b) Transfer all the information given to the diagram, making
sure that all units belong to a coherent system (in our case SI units).

(c) Mark all the forces acting on the body being considered and
note any physical laws that apply.

(d) Apply P = mf. (Consider components in two directions at
right angles for motion in one plane.)

(e) Use the appropriate equations for the kind of acceleration
found, obtaining them by integration if necessary.

It is not suggested that this scheme should be rigidly adhered to
or that it applies to all problems. Special techniques for individual
types of problem are explained in succeeding chapters.

Example 1. A train of mass 200 tonne is travelling at 36 km/h on
a level track. The tractive force exerted by the engine is constant and
of magnitude 100 kN, while the resistances (also constant) amount to
40 N/t. Find the time taken to reach a speed of 72 km/h. Find also
the total normal reaction between the train and the track.

0m/s ! 20m/s
- T

i N

| |
140x200 N

} _200x1000 kg 100 000 N:

200 000g N
Figure 7.9

Since P = mf referring to Figure 7.9, we have
horizontally 100 000 — 8 000 = 200 000f ()
vertically N —200000g=0 ... (i)
From (i) N =200000gN
= 1960 kN.

. 92 000
From (i = 300000
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%
T 200

_ = 2
= 50m/s .

Since the tractive force is constant, this acceleration will be
constant and hence the formula v = u + ft applies.
20 = 10 + (23/50)¢
t = 500/23 = 21-74s.

The normal reaction is 1960 kN and the train takes a further
21-7 s to reach a speed of 72 km/h.

Example 2. A particle of mass 2 kg is suspended by an elastic thread
of modulus 15 N and natural length 15 cm. If the particle is projected
vertically downwards, find its acceleration when the thread is stretched
to a total length of 25 cm.

Figure 7.10

The modulus of the thread is 15N and its extension 01 m.
Hence by Hooke’s law,

T = Ax/l)
= 15(10/15)
= 10N
Since P = mf, referring to Figure 7.10, we have vertically down-
wards

g—-T=2
98 — 10 = 2f

f = —01m/s>
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At the instant when the thread is 25 cm long, the particle has a
downward acceleration of —0-1 m/s*. (Note that this is the instan-
taneous acceleration for this position. To investigate the general
motion of the particle it would be necessary to find the acceleration -
in a typical position say at a distance s from some fixed point.)

\,\2 m/s N

~O
tmg 30
Figure 7.11

Example 3. A particle is projected at 2 m/s down a rough plane
inclined at 30 degrees to the horizontal. If the coefficient of friction

between particle and plane is 1/./ 3, find the time taken to slide 8 m.

The particle is sliding. . F = uN = N/ﬁ.
Since P = mf referring to Figure 7.11, we have

perpendicular to the plane N —mgcos30° =0 R ()]

down the plane mg sin 30° — N/\/g =mf ....(i})
From (i) N = mg\/§/2 and substituting this value in (ii),

1 A

f=0.

This means that the particle must be moving with constant speed,
sO

s =t
8 =2t
t =4s.

The particle slides 8 m in 4 s.
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Example 4. A particle of mass m, initially at rest, moves on a smooth
horizontal surface in a straight line under a variable force which has
magnitude 2at + b after time t (a and b being constants). Find an
expression for the speed of the particle at this time.

N,
f
rest ’
l m 2at+b
¢ m—
mg
Figure 7.12

Figure 7.12 shows the situation at time t. Since P = mf,

horizontally 2at + b = mf

vertically N—-—mg=0
S =Q2at + b)/m
Le. % = (2at + b)/m.

Integrating with respect to ¢,
v = (at* + bt)/m + C.
But whent =0,v = 0,s0that 0 =0+ C,ie. C =0
v = (at* + bt)/m

and this is the required expression.

(Note that when no units are given it is assumed that all quantities
quoted are already in a coherent system of units.)

It is recommended that the following questions should be studied
in detail.

Exercises 7b

1. A particle is placed at the top of a smooth inclined plane and
released. If the plane is 2 m long and of inclination 1 in 196, find
the speed of the particle when it reaches the bottom.

2. An clastic string, of modulus 2g N and natural length 1 m,
has one end fixed while the other end B is pulled vertically down-
wards until the extension is 0-5 m. While stationary in this position
a particle of mass 1kg is gently attached to B and is released.
What happens?
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3. A sled, which with its load has a mass of 50kg, is moving
horizontally at an instantaneous speed of 2 m/s. The motion is due
to a horizontal force of 170 N acting against resistances totalling
20 N. Find the speed of the sled 3 seconds later.

4. A spring (modulus 16 N, unstretched length 2 m) is fastened
at one end to a smooth horizontal surface. To the other end a
particle of mass 4 kg is attached. This particle is now pulled along
the table to stretch the spring and is released. Find the acceleration
of the particle when at a distance s metres from the unstretched
position. Hence show that the motion is simple harmonic and find
its period.

5. A mass of 1tonne is pulled up a rough slope by a constant
force of 17 kN. The slope is at 30 degrees to the horizontal and the
coefficient of friction is 1 /\/3. Find the time taken to travel 100 m
from rest.

6. A particle of mass 2kg is pulled from rest along a smooth
horizontal surface by a force which has magnitude (> + D) N after
t seconds. Find its acceleration at this time and its speed when
t =3
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8

MOTION IN A STRAIGHT LINE UNDER
CONSTANT FORCES

8.1. GENERAL METHOD

Ir all the forces acting on a body are constant, then (from P = mf) .
its acceleration will be constant. Hence, the formulae for uniform
acceleration, developed in Section 5.3, can be applied. They are

v=1u-+ft
v =u? + 2fs
s =ut + 3 ft%

Illustrative examples are given below but the reader should first
refer again to Examples 1, 2, 3 and 4 of Section 5.3.

Example 1. A nail of mass 4 g is hammered horizontally into a fixed
block of wood. The first blow of the hammer imparts a speed of
180m/s to the nail and it moves 6 mm into the wood. Find the
resistance (assumed constant) that it encounters.

18__(_)_ m/s

> {?Sl
;\ko\%
A

Figure 8.1

Referring to Figure 8.1 and applying P = mf horizontally,
—R = 0004/,
f = —-250R.
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Since R is constant, f is constant and hence the formula
v? = u? + 2fs applies.

0 = 180% + 2(—250 R). 0-006
giving R = 10800 N.

The resistance to the nail is equivalent to a constant force of 10-8 kN.

Example 2. A stone is thrown vertically downwards with a speed of
21 m/s from the top of a building of height 180 m. Another stone is
thrown vertically upwards from the bottom of the building with the
same speed. Find the time taken by the first stone to reach the ground
and show that the second stone takes the same time. (Neglect the
effect of air resistance.)

+21mys
| .
l H
'
my fz : i
f, ’"ZT f
|
i m.g
- i
] |
| [
]
H 21m/st |
Figure 8.2

Let the stone thrown downwards have mass m;. Then the only
force acting on it is its weight m, g, and from P = mf, its downward
acceleration f, = g (refer to Figure 8.2). This acceleration is
constant, so s = ut + 4 ft? applies.

180 = 21t + 19-8¢2
giving t=3% or -9
Hence the first stone takes 4% s to reach the ground. (The second
root of our equation is inadmissible.)
Now consider the stone thrown upwards (of mass m, say). Again
the only force acting on it is its weight m, g, so its upward acceleration

f» = —g. This acceleration is constant, so s = ut + % fi?,
at the ground O =21t — 1982
giving t=% or t=0.
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MOTION IN A STRAIGHT LINE UNDER CONSTANT FORCES

Hence, the second stone takes 42 s to reach the ground, the same as
the first stone. (Thesecond root of our equation refers to the moment
of projection.)

It is important to note that in these formulae s stands for the
distance from some origin O, not for the distance travelled. Hence
the formula s = ut + 4 ft* will give us the two times when the
particle is distant s from O, provided the acceleration remains
constant in magnitude and direction throughout the motion.

Example 3. Two particles of mass 1 kg and 2kg are connected by
a light inelastic string. The particles are held with the 1 kg mass on
a rough horizontal table and the 2 kg mass hanging vertically. The
string is taut and passes over a smooth pulley at the edge of the table.
The system is now released from rest. If the coefficient of friction
between the 1 kg mass and the table is 4, find the tension in the string
and the speed acquired by each particle in 1 second. (Assume that in
this time, the 1 kg mass does not reach the edge of the table, nor the
2 kg mass the floor.)

Y
1kg T
Fa O _}'
y’N
44—~ - ~qrest
3
T
|
P2kg is
1
!
29 N i
______ | 2
Figure 8.3
Refer to Figure 8.3.
When the particles are in motion F = uN,
F =iN.
Consider the 1 kg mass. Since P = mf,
horizontally T — 4N = 1f )
vertically N-—-1g=0 RO (1))
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Consider the 2 kg mass. Since P = mf,

vertically 2g — T = 2f ... (i)
From (ii) N = g, and substituting this value in (i) gives
T—3g=f ....(a)
Multiplying (a) by 2 and subtracting (iii), 3T — 3g = 0.
T=g¢g
L T =98N.
Adding (iii) and (a) 2g — 32 = 3f
' S =gR
= 49 m/s2.

Since this acceleration is uniform, v = u + fi,
after one second v=0+49 x 1
v =49 m/s.

The tension in the string is 98 N and in 1 second each particle
acquires a speed of 49 m/s.

Exercises 8a

1. A particle of mass 8 kg is pulled from rest along a smooth
horizontal surface by a constant horizontal force of magnitude
320 N. Find the distance travelled in 2 seconds.

2. Astoneisthrown vertically downwardswith aspeed of 100 cm/s.
Neglecting the effect of air resistance, find how far it falls in one-tenth
of a second and the speed acquired.

3. A car of mass 0-5 tonne moves along a level road against a
constant resistance of 30 N. If the engine exerts a constant tractive

- force of 1kN, find the time taken to increase speed from 18 km/h
to 54 km/h.

4. A particle is projected at 14 m/s along a rough horizontal
surface. The coefficient of friction between particle and surface is 4.
How far does the particle travel before coming to rest?

5. A bullet of mass 10 g, travelling horizontally at 600 m/s, enters
a fixed block of wood. If it penetrates the wood to a depth of 15 cm,
find the resistance (assumed constant) that it encounters.

6. A particle slides along a rough horizontal surface pulled by
a horizontal force equal in magnitude to its own weight. The
coefficient of friction between particle and surface is u (u < 1).
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Show that, if ¢ is the time taken to travel a distance s from rest, then
gt2 (1 — p) = 2.

7. A 4kg mass on a smooth horizontal table is connected by a
light inextensible string, which passes over the edge of the table,
to a 10 kg mass hanging freely. The 4 kg mass is held at a distance
of 50 cm from the edge of the table and then released. Find the time
it takes to reach the edge of the table and the speed acquired.

8. A particle slides from rest down a rough plane inclined at
tan ! § to the horizontal. Ifit covers the first 7 m in 5 seconds, find
the coefficient of friction between the particle and the plane.

9. A particle is projected vertically upwards at 280 cm/s. At what
times will it be at a height of 30 cm above the point of projection?
Find its speed at those times.

10. A lift accelerating upwards uniformly from rest attains a speed
of 18 km/hin 10seconds. Find the magnitude ofthereaction between
the floor of the lift and a 70 kg man standing on it.

11. A particle is projected directly up a rough inclined plane with
speed u. The plane makes an angle a with the horizontal and the
coefficient of friction between the particle and plane is u. If after
travelling a distance s, the particle is moving with speed v, find a
formula for s in terms of u, v, 4 and a.

12. A particle, of mass 4 kg, on arough planeinclined at 30 degrees
to the horizontal is attached to one end of a light inelastic string.
The string passes over a small smooth pulley at the top and carries
at its other end a particle of mass 5 kg hanging freely. The coefficient
of friction between the 4 kg mass and the plane is 1/2\/3. Find the
acceleration of the system when released and the speed acquired in
0-5 second.

13. A particle of mass 3kg on a smooth horizontal plane is
acted upon by a force F. F = 9i + 6j N, where i,j are horizontal
unit vectors at right angles to each other. If, initially, the particle is
at rest, show that after 2 seconds its displacement is 6f + 4j metres.

14. i, j are horizontal unit vectors in the directions east and north
respectively. Forces Fy, F, act on a 2 kg particle at rest on a smooth
horizontal table F; = 2i + 4N and F, = 3j — 9k N. Find the
velocity of the particle, in magnitude and direction, after 3 seconds.

15. A particle of mass m moves from A4 to B under the action of
constant forces. A4 has position vector @ — b, B has position vector
a + b and the particle takes time ¢ to travel from A to B. If it starts
fromrest at 4, show that the resultant force R acting on the particle is
given by

t’R = 4mb.
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8.2. COMPOUND PROBLEMS

If the forces acting change suddenly during the motion of a particle,
each part of the motion should be considered separately. The speed
of the particle at the “‘change-over” forms the link between the two
parts of the motion and must usually be found.

Also, in this kind of uniform acceleration problem it may some-
times be an advantage to use a speed-time curve rather than the
standard equations. This method is used in one of the examples that
follow.

Example 1. Two particles of mass m and 2m are connected by alight
inextensible string passing over a smooth pulley. The system is held
with the mass m on the ground and the string taut so that the mass 2m
hangs at a height h above the ground. It is then released. Find the
maximum height reached by the mass m and the time taken to get there,

(a) (b}
Figure 8.4

Consider the motion with the string taut. (Refer to Figure 84a)
Since P = mf,

for mass m T~ mg=mf ()
for mass 2m 2mg — T = 2mf. R 11}
Adding (i) and (ii) 2mg — mg = 3mf
' f =1z
This is a uniform acceleration so, v? = u? + 2fs. Hence, when 2m
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mass strikes the ground,

g

2=0+22h

v + 3

or v = /%gh
Also s = ut + 3ft?
g

h=0+ 32t

+23

6h
t=+ [—.
g

That is, the 2m mass hits the ground after a time ,/6h/g moving with
speed \/ Zgh. Then the string goes slack (refer to Figure 8.4b) and the

mass m rises with uniform acceleration —g and initial speed /3gh.
Again for uniform acceleration v* = u? + 2fs,

at maximum height 0 = 3gh — 2gs
Hence total height above ground =

Also, since v = u + ft
0= ./%gh — gt

2h

t= _[=—

3¢’

|6h /2h
total time taken to reach max. height =/— + e
g g

—a |2

g

The mass m reaches a maximum height %k after a time 4, /2h/3g.
Example 2. An engine pulls, from rest, a train of mass 250 tonne with a

constant tractive force of 100 kN until it reaches a speed of 54 km/h.
The engine is then cut-off and the brakes are applied producing a force
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of 200 kN which brings the train to rest. If the resistance to motion is
80 N/t throughout, find the total distance travelled.

Ny Ny
rest — 1 1B5m/s S L rest

80 x'250 N [250 kg 100 000N gox 250N[75 Kale200 000N
f— J

w w

(a) (b)
Figure 8.5

Consider the train as it accelerates. (Refer to Figure 85a.)
Since P = mf,
horizontally 100000 — 80 x 250 = 250 000f;
giving fi = 8/25 m/s2.

Consider the train as it decelerates. (Refer to Figure 8.5b.)
Since P = mf,

horizontally —200000 -- 80 x 250 = 250000/,
giving f» = —22/25m/s>.

Speed in m/s
3
&

Time in seconds
Figure 8.6

Sketching a speed-time curve we have Figure 8.6.

Slope of speed—time curve = acceleration

15 8 . 15 22 ..
7 =3 ....{1) and LT s coea ()

Area under curve = distance travelled
3(ty + £,)15 = s (the total distance travelled by
the train). oo (n1)
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25 x 15 25 x 15

From(i)t; = ——8—and from (ii) t, = T .. substituting

these values in (iii),

25 x 15 25 x 15
s T !
= 4794 m.
The total distance moved by the train is 479 m.

5

s=1%

Exercises 8b

1. A car accelerates from rest under a constant tractive force of
100 N. After travelling 300 m the engine stalls and the car slows
down to a stop, without the application of the brakes. If, throughout
the motion, there is a constant resistance of 30N, find the total
distance travelled.

2. Aparticle of mass 2 kg, on a smooth plane inclined at 30 degrees
to the horizontal, is attached to one end of a light inelastic string. The
string passes over the top of the plane and carries at its other end a
3 kg mass hanging freely. The system is released from rest in a
position where the 2 kg mass is 3 m from the top of the plane and the
3 kg mass is 2-5 m from the ground. Find the speed of the 2 kg mass
when it reaches the top.

3. A particle of mass 3 g falls from a height of 40 cm onto a soft
material into which it is found to have penetrated 2-42 cm. Find the
constant resistance that could account for this. (Neglect the effect
of air resistance.)

4. A light inextensible string passes around a smooth pulley and
carries masses of 500 g and 1 500 g at its ends. The system is released
from rest with the string taut and the 1 500 g mass 2 m above the
floor. Find the time taken until the string jerks tight for the first time.

5. A horizontal surface is part smooth part rough. A particle is
projected along the smooth part with speed u. After travelling a
distance d, it meets the rough section and is shortly brought to rest.
If u is the coefficient between particle and surface, find the further
distance travelled.

Show also that if £ is the total time in motion, then ug(ut — d) = u>.

6. A light inextensible string passes over a smooth pulley and
carries 7 g masses at either end. A further 2 g mass is added to one
side and the system is released from rest. After travelling 10 cm
the double particle passes through a ring and the 2 g mass is lifted off.
The ring is 14 cm from the floor. How long will it be before the
string goes slack?
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7. A car of mass 500 kg travelling on the level is approaching an
incline of 1in 5. When 200 m from the foot of the incline its speed is
36 km/h. If the maximum tractive force the car can produce is
400 N, how far up the hill can it go? (Assume a constant resistance of
40 N throughout.)

8. An engine, exerting a constant tractive force of 100kN, pulls
from rest a train of total mass 250 tonne. After travelling 200 m,
several coaches are uncoupled so that the mass is reduced to 150
tonne. At the same time the engine is shut off. If there is a constant
resistance of 40 N/t, how far will the train go before coming to rest?

8.3. LINKED ACCELERATIONS

In pulley systems where a single string passes round movable
pulleys, the relationships between the various accelerations must
first be established.

Example 1. A light inextensible string fastened to a point in the ceiling
passes under a smooth movable pulley of mass 5 kg, over a smooth fixed
pulley and carries a 4 kg mass hanging freely. All parts of the string
which are not touching the pulleys are vertical. If the system is
released from rest, find the speed acquired by the movable pulley in
2 seconds.

Suppose the movable pulley rises a distance d in time t. Then 2d
of string is released so that the 4 kg mass falls a distance 2d in the
same time. Thus the distances moved are in the ratio of 1:2 and,
differentiating twice with respect to t, the accelerations will be in the
same ratio.

i.e. F=2f (refer to Figure 8.7).

(Alternatively, at any instant let the pulley be distant x below the
line LM and the 4 kg mass distant y. Then the length of the string

I=2x+y+k (a constant).
Again differentiating twice with respect to time

d’x  d?%
0=227,%Y 9
az Tar Tt
d’y 2dzx
or d? = TTar

Hence F = 2f as before.)
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Now since P = mf,
fordkgmass 4g — T =4.2f
for pulley 2T — 5g=5.f.

L —— —
5 kg—
T
4kg
F
4g N
Figure 8.7

Multiplying (i) by 2 and adding (ii)

8g — Sg = 21f
3g
f= 31

= 1 m/s?

This is a uniform acceleration so

v=u+ ft
after 2 s from rest v=0+1%-2
= & mys.

The pulley acquires an upward velocity of 280 cm/s in 2 s.

(i)
(i)

In pulley systems with more than one string, and in other situa-
tions where one body (free to move) is carried with another, relative

accelerations can be used.

Example 2. A light inextensible string passes over a smooth fixed
pulley and carries at its ends a particle of mass 4 g and another smooth
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pulley A of mass Sg. A second string carrying 3 g and 2 g masses at
its ends hangs round A. Find the acceleration of A when the system is
released.

Let f be the downward acceleration of the 3 g mass relative to
the pulley A. Then the resultant accelerations of the various bodies
will be as shown in Figure 8.8.

Since P = mf,
|
\
0-0029 N
Figure 8.8
for 4 g mass upwards T — 0-00d4g = 0-004F (1)
for A downwards 2T, + 0005g — T = 0-005F .. (i)
for 2 g mass upwards T, — 0:002g = 0-002(f — F) ....(ii)
for 3 g mass downwards 0003g — T, =0003(f + F) ....(1v)
Adding (i} and (i1),
2T; + 0-:001g = 0-009F. ... (@)
Multiplying (ii1) by 3, (iv) by 2 and subtracting,
5T, — 0:012g = —0-012F. ....(b)
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Multiplying (a) by 5, (b) by 2 and subtracting,
0-029g = 0-069F
F =g
= 4119 m/s2.

Pulley 4 moves with a downward acceleration of 4-12 m/s2.
Example 3. A particle of mass m is placed on the rough inclined
face of a wedge which stands on a smooth horizontal table. The mass
of the wedge is 2m and the coefficient of friction between particle and
wedge is u, i being less than tan o where o is the inclination of the face

to the horizontal. The system is released from rest. Show that the
wedge begins to move with an acceleration f given by

2f = (gcosa — fsina)(sina — pucosa).

If o =45 degrees and u =%, find the distance moved by the
particle relative to the wedge in 1 second.

Motion of particle v2mg
Motion of wedge

(a) (b)
Figure 8.9

Since p < tan a, the particle will slip down the plane and hence
F = uN.

Consider the motion of the particle (refer to Figure 8.9a) and
let f* be the acceleration of the particle relative to the wedge. Then
its resultant acceleration will have components as shown in the

diagram.
Since P = mf,
down the wedge mgsina — uN = m(f' — fcosa)

(D)
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perpendicular to the wedge mgcosa — N = mfsina ....(ii)

Consider the motion of the wedge. (Refer to Figure 8.9b.)
Applying P = mf horizontally,

Nsina — uN cosa = 2mf. ... (1)
From (i1)
N = m(gcosa — fsin«) ....(a)
and substituting this value in (ii1),
m(gcosa — fsina)(sina — pucosa) = 2mf,
or (gcosa — fsinaj(sina — pcosa) = 2f ....(b)
as required.
Now putting « = 45 degrees, u = 7 in (b) and then (a), we have,
f=4%g and N =8/9./2mg.
Substituting these values in equation (i),
mg 1( 8 mg) ( 7 1 )
e 22 =mlr — . _
2 292 9./2°
g -8 =2 g
e

B
= 462m/s? (in SI units).
This relative acceleration is uniform so that the relative distance is
given by s = ut + 3 fi%
after 1s from rest s =0 + H4-62)12
=231 m.
The particle moves 2-31 m relative to the wedge in 1 second.
(Note that in these, and indeed in all, problems care should be
taken in choosing directions in which to resolve. In this particular
case f' was not required initially. By resolving for the particle along

and perpendicular to the wedge face, f” was isolated in equation (i)
and its elimination was not necessary.)
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Exercises 8¢

1. A particle of mass M on a smooth plane inclined at an angle o
to the horizontal is attached to one end of a light inelastic string.
The string passes over the upper edge of the plane, under a smooth
movable pulley of mass m and is attached to a fixed point. The
string on either side of the pulley is vertical. The system is released
from rest. Show that the acceleration of the mass M down the plane
is 2g(2M sin a — m)/(4M + m).

If o = 30 degrees, M = 10 gand m = 8 g, show that the 10 g mass
will move down the plane and find its speed when it has moved 30 cm.

2. A 7kg particle is attached to one end of a light inextensible
string which passes over a smooth fixed pulley, under a smooth
movable pulley and over another smooth fixed pulley to another
7 kg particle hanging freely. The movable pulley has a mass of 15 kg
and the strings on either side of it are vertical. This pulley is given
an upward velocity of 8 m/s. Find the time taken until it reverses
direction.

3. A particle of mass 5kg on a smooth horizontal table is con-
nected by a light inelastic string passing over the edge of the table
to a smooth pulley of mass 1 kg. A second string passes round this
pulley and carries masses of 1 kg and 3 kg at its ends. If the system
is released from rest with the 5kg mass 1 m from the edge of the
table, show that it will reach the edge in less than a second and find
its speed as it does so.

4. A particle of mass 9 kg hangs on the end of a light inextensible
string which passes over a smooth fixed pulley. The other end carries
a light smooth pulley, over which hangs a second string carrying
masses of 3 kg and 1 kg. Find the accelerations of all three masses
when the system is released.

5. A wedge of mass 3 kg is placed on a smooth horizontal surface
so that one smooth face is inclined at 30 degrees to the horizontal.
A particle of mass 1 kg is placed on that face and the system begins
to move. Find the magnitude of the resultant acceleration of
that particle.

6. A plank of mass 7 kg rests on a smooth floor with its rough face
uppermost. A particle of mass 3 kg is projected along this face.
If the coefficient of friction between particle and plank is %, find the
acceleration of the particle relative to the plank.

If, in the subsequent motion, there is a moment when the particle
is moving at 10 m/s and the plank at 3 m/s, how much longer will it
be before the particle and plank are moving together at the same
speed.
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EXERCISES 8*

1. A particle of mass 8 kg on a smooth horizontal surface is pulled
by a horizontal force T of magnitude 64 N. If initially, when T is
applied, the particle is at O moving at 10 m/s in a direction opposite
to T, find its position 3 seconds later.

2. A particle of mass 5 kg, at rest on a smooth horizontal surface,
has applied toit three forces P,Qand R. P =i+ 7jN,Q = 6i — 3jN
and R = ¢f — 2i N, where i, j are perpendicular horizontal unit
vectors. Find the velocity and displacement of the particle after
4 seconds.

3. A particle of mass 2m is held on a smooth plane inclined at an
angle « to the horizontal. It is connected by a light inextensible
string passing over the top of the plane to a mass m hanging freely.
The system is released from rest. Show that the 2m mass will begin
to move up the plane provided that o < 30 degrees.

If sin « = , find the speed acquired by the particles in 3 seconds.

4. A particle is projected upwards at 9-8 m/s from the top of a
building 14-7 m high. How long does it take to reach the ground?
(Neglect air resistance.)

5. A car “free wheels”” down a hill, inclined at an angle « to the
horizontal, with constant speed u. When 1t reaches the bottom,
the brakes are applied producing a constant force equal to 55 of the
weight of the car. The car is thus brought to rest in a distance s.
If the resistance to the motion 1s constant throughout show that

25u2
§=——
g(1 + 50 sin )

6. A light inextensible string lies on a smooth horizontal table
with its ends passing over opposite edges. To these endsare attached
masses m and 2m respectively, while a mass M is tied to the mid-point
of the string on the table. The system is released and when the
strings are tight the particles move with acceleration f. Show that

m
f= g(3m + M )’
and find the tensions in the strings.

7. i, j, k are unit vectors horizontally east, horizontally north and
vertically upwards respectively. To a particle of mass 5kg at rest
on a smooth horizontal surface, forces F,, F, are applied.
F, =3i —j+2kN and F, = 2i +j— 2kN. In what direction
does the particle begin to move and how far does it go in 2 seconds?

* Exercises marked thus, f, have been metricized, see Preface.
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8. A nail of mass 10 g is being hammered vertically downwards
into a fixed block of wood. The first blow of the hammer imparts
a velocity of 140 cm/s to the nail which penetrates 1 cm into the
wood. Find the constant resistance which would account for this.

9. A particle is projected vertically upwards at a speed of 14 m/s.
When it reaches its greatest height another particle is projected
upwards at 28 m/s in the same vertical line. Find the height at which
they collide.

10. A small lift of mass 48 kg contains a load of mass 2 kg. When
ascending, its speed increases uniformly from 2m/s to 3m/s in
1 second. Find the constant tension in the rope and the reaction
between the load and the lift.

When descending, it again increases its speed from 2 m/s to 3 m/s
in 1 second. Find, in this case, the tension and reaction.

11. A block of mass 20kg is held at rest on a fixed plane of
inclination 30 degrees to the horizontal. A light inextensible string
attached to the block runs up the plane parallel to a line of greatest
slope, passes over a smooth fixed pulley at the top of the plane and is
attached to a particle of mass 13 kg hanging freely. When the system
is released, contact between the block and the plane is smooth for
the first 1 m of the motion. Thereafter the contact is rough, the
coefficient of friction being . Assuming that the block does not
reach the pulley, find the total distance it travels before coming to rest.

Show that, when the block meets the rough portion of the plane,

the tension in the string suddenly increases by an amount %g\/§g N.
(London)t

12. A particle of mass 2kg, at a point whose displacement is
2i + 4j + 10k m from a fixed point 0, is acted upon by three forces
F,, F,and F;. The particle is initialiy at restand F, =i + 2j — 3k,
F, =2 —j— 4k, F; =i — 2j + 2k N. Find the displacement of
the particle from O after 2 seconds.

13. A particle is pulled along a rough horizontal table by a string
which isinclined at an angle 6 to the table. The tension in the string
is constant and equal to the weight of the particle. If A is the angle
of friction, show that the particle moves with acceleration f, where

fcos 2 = g{cos(@ — 4) — sin 4}

If the inclination of the string may be varied (but not the tension
in it) and the coefficient of friction is 3, show that the greatest
distance that can be covered from rest in 1 second is 245 cm.

14. Two particles A and B each of mass 6 kg are connected by
a light inelastic string which passes over a smooth fixed pulley.
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A mass of 3 kg is attached to A. Find the acceleration with which
the system begins to move.

After descending 6 m from rest, 4 reaches the floor and B con-
tinues to rise. Find how far B rises above its original level and its
velocity just before the string next becomes taut.

15. A particle of mass 5m lies on a rough horizontal table, the
coefficient of friction being p. The particle is connected by a light
smooth inextensible string, passing over a small fixed pulley at
the edge of the table, to a small light pulley hanging freely. Another
light smooth inextensible string passes over the movable pulley and
carries particles of masses 3m and 2m at its ends. The system is
released from rest. Show that the acceleration of the particle on
the table is (24 — 25 p)g/49, provided that u < 24/25.

Determine the tension in the second (lower) string. {London)

16. A particle slides down a smooth plane inclined at an angle o
to the horizontal. After it has covered a distance s, its speed is
found to be v. Show that the time taken (¢) satisfies the equation

gsinot? — 2ot + 2s = 0.

Discuss the meaning of both roots of this equation.

17. A wedge of mass m lies on a smooth horizontal plane and a
particle of mass m is in contact with a smooth inclined face of the
wedge. The inclination of this face to the horizontal is 30 degrees.
The system is released from rest with the particle at a vertical height
h above the horizontal plane. Find (a) the acceleration of the wedge,
(b) the time taken for the particle to reach the horizontal plane.

(London)

18. Two particles of mass m;, and m, are connected by a long
light inextensible string which passes over a smooth pulley. When
they are moving with speed u, the first particle upwards and the
second downwards, the second particle is instantaneously stopped
and released. Prove that, just as the string becomes taut again, the
first particle is at rest. (Oxford, part)

19. A 2 kg particle starts from rest at a point O moving under the
action of two forces 3i + 6j and 2i + 6j N. Simultaneously, an
identical particle passes through a point Panoving under the action
of a single force 4i — 3j N. The two particles collide after 2 seconds
with the second particle moving at 5 m/s. Find the speed with which
it passed through P and the displacement of P relative to O.

20. A wedge of triangular cross-section lies on a rough herizontal
table and its faces are each inclined at an angle of 45 degrees to the
horizontal. Two particles of masses 3m and m lie on the smooth
inclined faces connected by a light inextensible string passing over
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MOTION IN A STRAIGHT LINE UNDER CONSTANT FORCES

a small smooth pulley at the top of the wedge. The string and the
particles lie in a vertical plane perpendicular to the top edge of the
wedge. If the wedge does not move, find the acceleration of the
particles. ‘

Find also the pressure exerted by the string on the wedge and show
that the coefficient of friction between wedge and table must be
greater than 2m/2M + Tm).

21. A train is travelling on a level track at 72 km/h. Assuming
there is no air or track resistance, find the constant brake resistance
in newtons per tonne required to stop the train in half a kilometre.

The train descends an incline at 72 km/h and when the brakes
areapplied it comestorestin three-quartersofakilometre. Assuming
the air, track and brake resistances are unchanged, find the time
taken to stop and the gradient of the incline.

[Take g as 9-8 m/s2.] (London)t

22. Two particles of masses 3 kg and 4 kg respectively, lic on a
horizontal table with which their coefficients of friction are each 3.
They are connected by a smooth inextensible thread which passes
through a hole in the table and carries in its loop a pulley of mass
M kg, the thread being entirely in one vertical plane and the hanging
portions of the thread being vertical. Show that there will be no
motion unless M > 3.

If M = 5, show that the particles and the pulley all move and
find their accelerations. (London)t

23. A light inextensible string passes over a smooth fixed peg and
carries at one end a particle 4 of mass 5m and at the other a light
smooth pulley; over the latter passes a second light inextensible
string carrying particles of masses 2m and 3m at its ends. Find the
acceleration of 4 when the particles move vertically under gravity.

Find by how much the mass of 4 must be reduced in order that
A can remain at rest while the other two particles are in motion.

(J.M.B.)

24. A smooth plank is fixed at an angle tan~' 3 with horizontal
ground. On it is placed a wedge of mass 40 g whose shape is such
that its smooth upper face is horizontal. On this face a 25 g particle
is placed 13 cm from the plank. In what direction (relative to the
ground) will the particle move?

Find the acceleration of the wedge and the time taken for the
particle to reach the plank.

25. A bullet of mass m is fired with speed u into a fixed block of
wood and emerges with speed 2u1/3. When the experiment is repeated
with the block free to move, the bullet emerges with speed u/2
relative to the block. Assuming the same constant resistance to
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penetration in both cases, find the mass and the final speed of the
block in the second case.
{Neglect the effect of gravity throughout.) (London)

26. A particle of mass 3m is connected by a light inextensible
string passing over a smooth pulley to a smooth pulley of mass M.
Over this pulley passes a similar string carrying masses m and 2m
at its ends. The system is released from rest. Show that the accelera-
tion of A is g(3M — m)/(3M + 17m).

If A is replaced by a pulley of negligible mass, find the new
acceleration of 4 and the tensions in the strings.

27. A car of mass 700 kg accelerates from rest under a constant
tractive force of 250 N exerted by its engine. After 40 seconds, when
its speed is 12 m/s, it ceases to accelerate and continues at constant
speed for 2 minutes. The engine is then switched off and the car
brought to rest with a constant brake force, the total time for the
journey being 3 minutes. If the resistance to motion was the same
throughout, find,

(@) the tractive force during the middle period of the motion,

(b) the force exerted by the brakes,

(¢) the total distance travelled.

28. A particle of mass m is attached to one end of a smooth light
inextensible string. The string passes over a smooth fixed pulley,
under a movable pulley 4 of mass m, back over another smooth
fixed pulley to be fastened to the axle of A. The pulleys are arranged
so that all free parts of the string are vertical. Ifthe system is released
from rest, show that the particle will descend provided m > $M.

If, when M = 2m, the pulley 4 is given a downward velocity u,
find the time it takes to return to that position.

29. Asmooth wedge, of mass M and triangular cross-section ABC,
is placed with the face through AB on a horizontal plane ; the angles
CAB and ABC are o and n/2 respectively. A particle of mass m is
placed on the inclined face, directly above the centre of gravity G of
the wedge. A constant horizontal thrust P is then applied perpen-
dicular to the vertical face and towards G. Ifthe wedge has accelera-
tion F in the direction of the thrust, show that

P = mgsinacosa + (M + msin® a)F,
and that the reaction of the horizontal plane on the wedge is

(M + mcos? a)g + mF sin a cos a.

(J.M.B.)
30. A smooth wedge, whose central cross-section is a triangle
ABC, right-angled at C, rests with the face containing AB on a
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MOTION IN A STRAIGHT LINE UNDER CONSTANT FORCES

smooth horizontal plane. When the wedge is held fixed, a particle,
released from rest, takes a time ¢, to slide the full length of C4A. The
corresponding time for CBis t,. Show that tan A = ¢,/t; and find
AB in terms of t; and ¢,.

If the mass of the wedge is n times that of the particle and the
wedge is free to move, show that the time of sliding down CA4
becomes.

t% 1/2
11— —1 .
‘[ (n + 1) + :5)]
(London)

31. A light inextensible string passes round a fixed smooth pulley
and carries at each end a smooth pulley of mass 1 kg. Over each of
these pulleys a string hangs, one carrying masses of 1 kg and 2 kg
at its ends, the other masses of 1 kg and 3 kg. The system is set in
motion. Find the acceleration of the pulleys and the tension in the
string to which they are attached.

32. Two bodies 4 and B of masses 6 kg and x kg (x < 6) res-
pectively are connected by a light inextensible string which passes
over a smooth fixed pulley. Show that the acceleration of the system
when released is

(6 — x)g/(6 + x).

After descending 8 m from rest, A strikes the floor which is
inelastic and B continues to rise a further 4 m. Find the value of x.
(W.J.E.C., part)}

-
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9

MOTION UNDER FORCES CAUSING SIMPLE
HARMONIC MOTION

9.1. BASIC METHODS

CoONSIDER a particle moving along a straight line at a distance s
from a fixed point O in the line. If the forces acting on the particle
are such that their resultant is towards O and of magnitude pro-
portional to s, then (from P = mf’) we can show that d2s/dt? = —n?s
and the motion is simple harmonic (n? being any positive constant
determined from P = mf).

For simple harmonic motion the following equations apply
(refer to Section 5.6):

v? = n*a® — 5%
s=asin(nt + ¢
v = ancos(nt + ¢
and the period T = 2n/n.

The amplitude a is the value of s when v = 0, determined usually
from the initial conditions. ¢ is determined from the value of s
when ¢ = 0. In particular, if timed from the centre, ¢ = 0, if timed
from an extreme position, ¢ = n/2.

Example 1. A light elastic string, of natural length 2 m and modulus
5N, is stretched between two points 3 m apart on a smooth horizontal
surface. A particle of mass 100 g is fastened to its mid-point, pulled
3 cm in the direction of the string and released. Find the time taken
to travel the first centimetre.

When the particle is fastened to the centre of the string, it divides
it into two parts. Each part is of natural length 1 m and extended
by $m. Since the particle is pulled aside only 3 cm, these strings
will remain taut throughout the motion.

Consider the motion of the particle when at a distance s from O
(refer to Figure 9.1). Then from Hooke’s law T = A(x/l) and the
modulus 1 = 5N. Hence T, = 5(3 — s)and T, = 5} + s).
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION
Since P = mf,

. d?s
horizontally T, - T, = 0-1?
d?s
d%s
—10s = 0-1—2
® de?
d2
or Et—j = —100s.
d?s/dt?
N
! ) u—sJ>0~1kg n_ i
A B
o,
SO, ' W
Figure 9.1
This is of the form d2s/dt?> = —n®s and hence the particle is per-

forming S.H.M., about O, for which n = 10.

From the initial conditions, the speed v = 0 when s = 0-03 and
hence the amplitude is 0-03 m.

Timing from the initial position, s = asin(nt + n/2), so when
the particle has travelled 1 cm, s = 0-03 — 0-01 and

0-:02 = 0-03 cos 10t

cos 10t = %
C 10t = 0-8410 (radians)
and t = 0-:08410s.

The time taken to travel the first centimetre is 0-0841 s.

Note that to prove that a motion is simple harmonic it is im-
portant to consider the particle in a typical position (distance s say
from some fixed point), not in its initial position.

In the above problem it was clear that if the particle proved to be
moving in S.H.M., then the centre of the motion would be the
centre O of the line AB. Hence the distance s was marked from that
point. In general, the centre of the motion will be the equilibrium
position for the system.
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BASIC METHODS

However, if this point is not easily determined, s can be measured
from any fixed point in the line of motion. Then we note that an
equation of the form d%s/dt®> = —n?(s + k) denotes S.H.M. about
the point wheres + k = 0. Forit we putx = s + k, then d*x/dr? =
d*s/dt? and our equation becomes d2x/dt? = n?x.

Example 2. A and B are two points 16 m apart. A particle P of

mass 2kg moves under the action of two forces SPB and 3PA N.
If the particle is projected from A towards B at 6 m/s, show that it
reaches B and find its speed there.

6 mis d?s/dr?
0 M/s —r—

s e s
A 3P4 P SPB __8__
T 5
it 1) Bt
Figure 9.2

Consider the particle when at a distance s from A (refer to
Figure 9.2). .
Since P = mf, in the direction of AB,

5PB — 3PA = 2 d2s/de?
5(16 — s) — 3s = 2 d3s/ds?

giving d®x/di®> = —4s + 40
= —4(s — 10)
So that if we put x = s — 10,
d?x/dt? = —4x.
This is of the form d?x/dt> = —n?x and hence the particle is

performing S.H.M., about the point s = 10(x = 0), for which n = 2.
For SH.M.
v? = n¥a? — x?)
at 4 62 = 4[a® — (—10)?]

a? = 109

a=./109 m.
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION

Since this amplitude is greater than the value of x at B, the particle
will reach B. Now applying the same equation again, at B

v? = 4(109 — 6%)
=4 x 73

v= 2\/—7_3 my/s.

The particle passes through B with a speed of 2,/73 m/s.

Example 3. A particle of mass m is hung on the end of a spring of
modulus 2mg and natural length l. The particle is pulled vertically
downwards until the string is of length 21 and then released. Find the
period of the subsequent motion and the maximum speed attained.

Figure 9.3

. Consider the particle in motion distant s from the unstretched
position (Figure 9.3).
By Hooke’s law

T = ix/l
T = 2mgs/L.

Applying P = mf downwards,

mg — 2mgs/l = md?s/dt?
d2s/dr> = —2gs/l + ¢

154




BASIC METHODS
d?s 2g

or S ——l(s - 1.
Putting x = s — 3/, this becomes
d?x 2g
Frla
This is of the form d2x/dt?> = —n%x and hence the motion is

simple harmonic, about the point where s = 4/, for whichn = . /2g/l.
Initially, v = 0 when s = | (x = }I), so that the amplitude a = 4l
For S.H.M. the period

T = 2n/n

[
T=2n /—:nﬁ.
2g g

For S.H.M. also v* = n?(a® — x2), and hence v is a maximum
when x = 0

Unmax =-ha

Umax = 3+/28L.

The particle moves in simple harmonic motion of period . /2l/g
and its maximum speed is % /2gl.

Exercises 9a

1. A spring, of modulus 1-5 N and natural length 30 cm, has one
end fastened to a smooth horizontal table. To the other end a
40 g particle is attached and pulled out horizontally so that the
spring is extended by 30 cm. If the particle is now released, show
that it moves in simple harmonic motion about the unstretched
position as centre, and find the speed of the particle when 20 cm
from that position.

2. A simple pendulum consists of a small particle, of mass m,
swinging freely in a vertical plane on the end of a string of length 1
Show that, when the particle is at an arc distance s from its equilib-
rium position, the tangential component of the resultant force on it
is mg sin (s/1).
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION

Hence show that for small displacements the motion of the particle
is simple harmonic and find its period. If the string is 20 cm long,
how many swings does it make per minute?

3. A particle of mass 4 kg moves between two points A and B
vn a smooth horizontal surface under the action of two forces
such that, when it is at a point P, the forces are 2PA and 2PB N.
If the particle is released from rest at A, find the time it takes to
travel a quarter of the way from 4 to B.

4. A 100 g particle hangs freely at rest on the end of a spring of
modulus 5 N and natural length 50 cm. If this particle is projected
upwards with a speed of 2 m/s, find the time taken till it first comes
to rest and the distance travelled.

5. An elastic thread, of modulus 19-6 mN and unstretched length
20 cm, is stretched between two points 28 cm apart on a smooth
horizontal table. A particle of mass 8 g is fastened to the centre of
the thread, displaced a little in the direction of the string (less than
4 cm) and released. Show that the particle performs S.H.M. of
period 2n/7 seconds.

If, during this motion, it passes through the centre moving at
10 cm/s, find its speed one-tenth of a second later.

6. A light helical spring of natural length 10 cm is fixed upright
on a table and a small platform of mass 10 g placed on top of it.
When the platform is depressed and released, it vibrates vertically
completing 5 oscillations in 1 second. Find the modulus of the
spring.

7. When a particle of mass m is hung on an elastic string, it is
extended by a distance x. Find the ratio of the modulus to the
unstretched length of the string. (This is sometimes called the
force constant of the string.)

One end of the string is now fastened at 4 to a smooth horizontal
surface and the particle pulled out horizontally until the extension
of the string is again x. The particle is then projected towards A
with speed u. If v is its speed when the extension is halved, show
that 4(v? — u?) = 3gx.

8. Two particles of equal mass hang on the end of a spring of
natural length ! and whose modulus is twice the weight of one of the
particles. Find the extension of the string.

If one of the particles is suddenly removed, find the time taken for
the remaining particle to reach maximum speed and the magnitude
of that speed.

9. One end of an elastic thread of natural length.[ is fastened to
a point O on a rough horizontal table. A particle is attached to the
other end and is held on the table at a distance 2! from O. The
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modulus of the thread is equal to the weight of the particle, and the
coeflicient of friction between particle and table is p (u < 1). If the
particle is now released show that after a time ¢ it will have travelled

a distance (1 — u)(1 — cos \/(g/Dt).

10. A particle P, of mass m, moves along a line AB, where A and B
are fixed points distant 3a apart. The particle moves under the
action of two forces 2(mg/a)i’7i, (mg/a)ﬁ. If it is projected from A
towards B with speed 3,/ga, show that it moves in S.H.M. of period

2n/3./3a/g and amplitude 2a.
Show also that the particle reaches B after a time equivalent to

one-third of a complete oscillation.

9.2. FURTHER EXAMPLES

Example 1. When a particle is hung from a fixed point by a light
elastic string it extends the string by a length e. If, now, it is projected
vertically upwards with speed \/Tge, show that the particle will come
to instantaneous rest after a time, \/aé(n/4 + 1). (Assume that the
string does not tighten again before the particle reaches this position.)

)
]
i
t
I
!
I
alo_ Vo _atl
4
: d?s
I e ma"g art
]
B_4m X I Bl 3
T ?Jde
mg mg
(a) (b)
Figure 94

(a) Consider the particle when hanging at rest (refer to Figure
9.4a).
By Hooke’s law

T = A(x/l)
T, = Me/l).
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION

And since the particle is at rest,

T1 —_ mg = 0
AMe/l) —mg =0
A = mgl/e.

(b) Consider the particle in motion between 4 and B, and at a
distance s from B (refer to Figure 9.4b).
By Hooke’s law

T = Alx/l)
T, = m_gl(e - s)
e l
_mg

= —l(e —5).

Since P = myf, vertically upwards
T, — mg = md?s/de®

%(e —5) — mg = md?s/de?
e
ivin d’s g
— = —Zs.
giving de? e
This is of the form d?s/dt> = —n?s and the motion is therefore

simple harmonic about B with n = /g/e.
For SH.M. v? = n¥a? — 5?)
g8 2
at B 2ge = =(a* — 0)
e

a=e\/i

This amplitude is greater than e so the particle will reach A.
For SH.M. s = asin(nt + &)

at 4 e=¢e 25int\/g
e

(timing from the centre B of the motion)
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1Vt = — [—.
giving 4\ g

This is the time taken to move from B to A.

Also v? = n¥a® — 5?)

at 4 v? = 5(2e2 —é?)
e

0= Jae

(¢) Consider the motion of the particle above 4 with the string
slack. Its initial speed will be \/gT,’ and it will rise with acceleration
—g. Then applying v = u + ft at the point where it comes to
instantaneous rest,

0=./ge— gt

e
= /e
b4

This is the time taken to reach this point from A. Hence the total
time from B to this position is

SNERAENE )
4Ng Vg Vg4 [
Example 2. A light elastic string of natural length 2 m is stretched
between two points A and B, 4 m apart, on a smooth horizontal
surface. A particle is fastened to the mid-point of the string whose
modulus is equal to the weight of the particle. If this particle is now

pulled aside to A and released, find the time taken for it to reach the
mid-point of AB again.

i i N rest
B 3 D C Im A
e tm- e — - s — I';"'l
w

d%s/qt?
b Am
]

Figure 9.5(a)
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION

The particle divides the string into two parts each of modulus
mg (where m is the mass of the particle) and unstretched length 1 m.

(a) Consider the motion between 4 and C with one string slack
and the particle at a distance s from E, the unstretched position for
the remaining string. (Refer to Figure 9.5a.)

By Hooke’s law T = Ax/l)
S T = mg(s/1)
Hence applying P = mftowards A,
—mgs = md?s/dt?
d?s
dr?
This is of form d2s/dt> = —n?s and indicates S.H.M. about E

with n = /g = 313,
At A, v = 0 and s = 3, hence the amplitude is 3 m.

= —gs.

For S.H.M. s = asin (nt + ¢).
at C 2 = 3sin(3:13t + n/2)
timing from extreme position A.
2 = 3cos(3-131)
313t = 0-8409 (radians)

t = 0-2687 s.
This is the time taken to travel from 4 to C.
Also v? = n¥a® - 5?)
at C v? =989 —4)
v =T7m/s.
L NV Tms
B E _ D im _iC A
N T2
L e e LR -1
yw
—_——
dx/ g2
Figure 95(b)

(b) Consider the motion between C and D with both strings tight
and the particle distant x from D. (Refer to Figure 9.5b.)
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By Hooke’s law T = Ax/D
T, =mg(l + x) and T, = mg(l — x)
Hence applying P = mf towards A
mg(l — x) — mg(l + x) = md?x/de?
d2x/dt? = —2gx
indicating S.H.M. about D with n = ,/2g = 4-427.

For SH.M. v? = n¥a? — x?)
at C 72 — 196(a2 — 12)
giving a=1871m.

This is the amplitude of this part of the motion.
Also X
at C 1 = 1-871sin (4-427t + Q) timing from centre D
sin (4-427t) = 0-5345
4427t = 0-5638 (radians)
t =01274s.

This is the time taken from C to D.
Hence the total time taken to travel from 4 to D is

02687 + 0-1274 = 0-396 s.

asin(nt + &)

Example 3. ABC is an equilateral triangle, of side 5 m, marked out
on a smooth horizontal surface. A particle P of mass 5kg moves on
this surface under the action of two forces 3PB and 2PC N. Show
that if the particle is released from A it will move in a straight line
cutting BC in D where BD:DC = 2:3, and find its speed when it
reaches D.

When the particle comes to instantaneous rest again at A’', the
force towards B ceases to act (so that it moves now towards C). Find
the total time taken to travel from A to A’ and to C.

(a) Consider the motion while both forces are acting (refer to

Figure 9.6a).
By a standard result obtained in Section 3.3

A0A + pOB = (4 + woC
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION
where C divides AB in the ratio u:4. Hence in this case

—_— — —

3PB + 2PC = 5PD

where D divides BC in the _@}io 2:3, i.e., the resultant of the two
forces on the particle is SPD, and if the particle starts from A4,
it will begin to move towards D and continue along the line AD.

A
A
1
1
1
I
'
i
I
|
i

D

C
~

’

W

— -

~N

,'ch/
%
a4
:,Skg
v

A
(b)

(a)

Figure 9.6

Then applying P = mftowards 4 when the particle is at a distance

s from D,
—5PD = 5d2s/ds?
—5s = 5d%s/dt?
d’s
de?
This is the form d2s/dt? = —n?s and the motion is S.H.M. about D

as centre, with n = 1. At A the speed is zero and therefore AD is
the amplitude of the motion. Applying the cosine rule to triangle

ABD,
AD? = 52 4+ 22 — 2 x 5 x 2cos 60°

AD = /19 m.

For SH.M. v> = n*(a? — 5?)
p? = 1(19 — 0)

v = \/Em/s.
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The particle will next come to instantaneous rest at its other
extreme position 4’ after half a period (measured from A), ie.

T
YRl TS

(b) Consider now the motion while only the force towards C acts
(refer to Figure 9.6b). .

Since the particle is at rest at A’, this force 2PC will cause it to
move directly towards C. We shall consider the instant when the
particle is at a distance x from C.

Since P = mf, towards 4’

—2PC = 5d2x/ds?
_2x = 5d2x/de?
d?x 2
el =

This indicates S.H.M. about C with n = /2. Hence the time taken
from A’ to C will be a quarter of a period, i.e.,

1 5 T
t, = — =} = — .
2 4(2n 2) 41/10s

total time from Ato C =t, + ¢,
=+ g, /10
= 2(4 + \/E) s.

The particle passes through D at ./19 m/s and reaches C after a
time /44 + /10) seconds.

Exercises 9b

1. An elastic string, of unstretched length 1 m and modulus 1 N,
has a particle of mass 20 g fastened to one end. The other end is
fixed to a point O on a smooth horizontal table. The particle is held
on the table at a distance of 2 m from 0. Find the time it takes to
reach O when released.

2. When a particle is hung on an elastic thread of natural length !
it extends the thread by 3. Show that the modulus of the thread is
twice the weight of the particle.
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MOTION UNDER FORCES CAUSING SIMPLE HARMONIC MOTION

If the particle is now pulled down a further distance [ and released,
show that it will rise to within 1 from the point of suspension in time

\/ﬂ 4 + \/3
g\3 2/
3. P is any point in the plane of i}rlangle ABC. Show that the

resultant of vectors represented by PA, PB and PC is a vector 3PG
where G is the centroid of the triangle ABC.

Three points A, B, C on a smooth horizontal table form an
equilateral triangle of side . When a particle of mass m is at any
point P on the table, it is simultaneously attracted to 4 by a force

%ﬁ to B by a force r_n_gﬁ and to C by a force @EP_C’ Initially

1t is placed at 4 and released Find how long it takes to reach the
side BC and its speed as it crosses that side. (London)

4. An elastic string, of modulus A and natural length [, has one end
fastened to a point O on a smooth horizontal surface. A particle of
mass m is attached to the other end and is projected from O hori-
zontally at speed u. Show that the greatest extension of the string in
the subsequent motion is u,/mi/A and that the time taken to return
to O is 2l/u + n/mi/A.

5. A particle has a mass such that when it is hung on an elastic
string of natural length 30 cm, it increases its length to 90 cm.
If, now, the particle is lifted to the point of suspension and released,
find the time taken till it again comes to rest.

6. A light helical spring of natural length 15cm and modulus
1-5¢ mN is fixed in a vertical posmon on a table. A scale- -pan of
mass 10 g containing a 30 g mass is placed on top of the spring,
depressed until the spring measures only 5cm, and then released.
Find the position at which the mass loses contact with the scale-pan
and the height above the table to which it rises.

7. An elastic string, of modulus A and natural length 2a, is
stretched between two points P and Q, distant 3a apart on a smooth
horizontal surface. A particle of mass m is then attached to the
mid-point of PQ, pulled to one side to P and released. Show that
it will just reach Q and that this will happen after a time

56 e )
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EXERCISES
EXERCISES 9

1. O is a fixed point and a particle P of mass m moves under a
net force kPO. If the particle is instantaneously at rest when at a
distance d from O, find its speed as it passes through O. (k is a
positive constant.)

2. A particle moves in simple harmonic motion of period 2 seconds
and amplitude 100 cm, If the mass of the particle is 10 g, find the
greatest and least force that it experiences.

3. A small ball bearing is released from the edge of a smooth
spherical watch glass so that it slides back and forth across it.
Show that, if the radius of the sphere is large compared with the
diameter of the watch glass, then the ball bearing will perform
simple harmonic motion. Find the period of the motion.

4. A light spring, of modulus 4 and natural length /, has one end
fixed to a point O on a smooth horizontal surface. The other end
carries a mass m which is held on the surface with the string just taut.
If this mass is now projected away from O with speed u, find its
furthest distance from O in the subsequent motion.

Find also the time taken to reach this position for the first time.

5. A rough plank moves horizontally in simple harmonic motion
of amplitude a and period T. Show that a particle on the plank will
not slip provided that the coefficient of friction is greater than
4na/(gT?). 4

6. A particle, of mass m, is attached to the mid-point of an elastic
string stretched between two points on a smooth horizontal surface
distant 2g apart, If this particle is slightly displaced a distance x
atright angles to the line joining the two points, show that, neglecting
(x/a)* and higher powers, the tension in the string remains constant.

Hence show that, if released to vibrate in this direction the mass
performs S.H.M. If the magnitude of the tension is T, find the
period of the motion.

7. When a 5 kg mass is hung from a spring, it extends the spring
by 20cm. If it is then pulled down a further 20 cm and released,
find the period of the subsequent motion and the maximum speed.

8. Some kitchen ‘“‘scales’ consist of a helical spring of natural
length ! on top of which is placed a scale pan of mass m. When a
further mass M is added to the pan, the total compression of the
spring is a. Find the modulus of the spring.

The pan is now depressed a further distance b and released.
Find the reaction between mass and pan (a) immediately on release,
(b) after travelling a distance b, () when the spring is its natural
length.
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9. Anelasticthread ofnaturallength 20 cm and modulus0-196 mN
is stretched between two points 4, B on a smooth horizontal table
30 cm apart. A particle of mass 2 g, fastened to the mid-point of
the string is released from rest at a point 20cm from A. Find the
period and amplitude of the subsequent motion.

What will be its speed when 17 cm from A4?

10. A4 and B are two points 30 m apart on a smooth horizontal
table. A particle P of mass 3 000 g moves under the action of two

forces 2PA and PB newton. The particle is released from rest at C,
a point which divides AB internally in the ratio of 2:1. Find the
position and velocity (in magnitude and direction) of the particle
after n/4 seconds.

11. To the mid-point of an elastic string, of natural length |,
a particle is attached whose weight is twice the modulus of the string,
The two free ends of the string are attached to a fixed point O and
the particle is pulled vertically downwards. If the particle is released
from rest at a point 3/ vertically below: O, find the time taken to
rise a distance /.

12. A particle P of mass m lies on a smooth horizontal table and
is attached by two light elastic strings, of natural lengths 3a, 2a and
moduli 4, 24 to two fixed points, S, T respectively, on the table.
If ST = 7a,show that, when the particle is in equilibrium, SP = 94/2.

The particleis held at restat the pointin the line STwhere SP = Sa,
and then released. Show that the subsequent motion of the particle

is simple harmonic of period n\/ (3ma/2). Find the maximum speed
of the particle during this motion. (J.M.B)

13. A small bead, of weight mg, moves along a smooth horizontal
wire under the action of a force which is directed always towards
afixed point 4 ata distance h vertically below the wire ; the magnitude
of this force is mn?r, where n is a constant and r denotes the distance
of the bead from 4.

Show that the bead performs simple harmonic motion of period
2n/n. Find the amplitude of this motion if the speed of the bead is v,
when it is at the point O on the wire which is vertically above A.

Given that v > hn, obtain an expression for the time required for
the bead to move from O to a point P on the wire such that
/ OAP = in. (Oxford)

14. A particle of mass m is attached to one end of an elastic thread
of natural length / and modulus A. The other end is fixed to a point
on a smooth horizontal table. If the particle is released from a
point on the table distant a + [ from O, show that the subsequent
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motion of the particle is periodic and of period

ml 41
] (Zn + a)'
15. A, Band C are the vertices of an equilateral triangle of side 5a.
A particle of mass m moves in the plane of the triangle under the
action of two forces, one directed towards 4 of magnitude 2(PA/a) mg
and the other directed towards B of magnitude 3(PB/a)mg, where
P is the position of the particle at any instant. Initially the particle
is placed at C and then released.
(a) Show that the particle moves in a straight line and find where
this line meets AB.
(b) Find the time that elapses before the particle first returns to C.
(¢) Find the velocity and acceleration ofthe particle at the moment
it crosses the line 4B. {London)
16. A particle is suspended from a fixed point O by means of a
light elastic string of natural length a and hangs at rest, its extension
being c¢. If it is given a downward vertical velocity v when in this
p?sition, show that the ensuing motion is simple harmonic provided
ve < ge.
If v* = 2gc, show that the time taken from the lowest point of its

path to the highest is
\/E 1 + 31
g 4 (W.JE.C)

17. A particle of mass m is being pulled up vertically with uniform
speed U at the end of an elastic thread of natural length / and modulus
mg. If the other end of the thread is suddenly fixed, show that the
string will remain taut provided U? < gl. Find the period and
amplitude of the motion that takes place when this condition is
satisfied.

18. A light elastic string, of natural length 2 m and modulus 10 N,
is stretched between two points L and M on a smooth horizontal
table4 mapart. A particle of mass 0-1 kgis fastened to the mid-point
of the string, then pulled aside to M and released. Show that it
returns to M after a time %(\/5 cos”'% + sin~ ' /%) seconds.

19. Two light springs AB, BC joined at B are fixed with AC in a
vertical line. A small particle is attached at B and displaced a dis-
tance d vertically. Show thatif now released the particle will perform
S.H.M. of period 2n,/d/g.

20. State clearly the relation between the acceleration and the
displacement in simple harmonic motion.
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A man of mass M stands on a horizontal platform which performs
a verticai simple harmonic motion of period T and amplitude a.
Find the force he exerts on the platform when the latter is at a height
x above its mean position ; give your answer in terms of M, g, xand T.
Deduce that he maintains contact with the platform provided that
T > Ty, where Ty = 27r\/(a/g).
If T = nT,, where n > 1, show that the greatest and least forces
exerted by the man on the platform are in the ratio (n* + 1)/(n* — 1).
(J.M.B.)
21. A particle is fastened to one end of an elastic thread of natural
length 0-2m and modulus equal to the weight of the particle. The
other end is fixed at a point Q. If the particle is released from a point
0-8 m below O, show that it will rise to a height of 0-1 m above O.
Find also the time that elapses before it returns to its initial position.
22. ABC is a right-angled isosceles triangle in which BC, the
hypotenuse, is of length 6a. A particle P, of mass m, moves in the plane

of the triangle under the action of three forces Zl%ﬁ, iﬁgJ_’B’ and
a a

mg—
XTgPC, A being a positive constant. The particle is released from

rest at A. Show that it will just reach the mid-point D of BC in time
in/ajig.

If, when it reaches D, the force towards B ceases to act, find the
speed with which it subsequently crosses the line AC.

23. Alight elastic string LX M of natural length 3//2 has a mass m
attached at X, where the unstretched length of LX = I. Ifthe system
is freely suspended from L, the mass hangs in equilibrium at a
distance 2/ below L. The system is placed on a smooth horizontal
table with L and M fixed at a distance 3/ apart. Find the position of
the mass when the system is in equilibrium.

If the mass is placed midway between the fixed points and released,
find the amplitude and period of the motion of the mass. (London)

24. A particle, of mass m, is attached to a point O by a light elastic
string and unstretched length [. Itis released from rest at @ and falls
a distance 2! before coming to instantaneous rest. Show that the
time taken to fall to the lowest point is

1 )
|:%7t+\/§+%sm_l(§):| g

25. A light elastic string, of natural length a and modulus 2mg, is
attached at one end to a fixed point A on a smooth horizontal table
and at the other end to a particle P of mass 2m. A second light string
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which is inextensible is attached to P and has at its other end a
second particle Q of mass m. The distance from A4 to the edge of the
table is 2a. Initially the string PQ passes over the edge, the plane
APQ is perpendicular to the edge, and Q hangs below the edge. Pis
held on the table with the elastic string just taut and then released.
Write down the equations of motion for P and Q when the distance
AP is 3a + x. Hence find the differential equation of the motion,
and the time taken for P to reach the edge of the table.

Find also the tension in each string just as P reaches the edge of the
table. (J.M.B)

26. Anelastic thread of unstretched length 2a is stretched between

two points Aand B. AB = 2\/§a and is horizontal. When a particle
is attached to the mid-point M of the thread it hangs at rest with AM
inclined at 30 degrees to the horizontal. Show that the modulus of
the thread is equal to the weight of the particle.

The particle is now pulled down a further small distance s. Show
that in this position, if (s/a)? and higher powers are neglected, AM =
2a + ¥s and cos 0 = (1 + 3s/a) where 0 is the angle between AM
and the vertical. Deduce the period of small vertical vibrations if the
particle is now released.

27. One end of a light elastic string, of modulus mg and natural
length [, is fixed to a point O of a rough horizontal table. A particle
of mass m is fixed to the other end of the string, and lies on the table
with the string just taut. The particle is then struck so that it begins
to move along the line of the string away from O with velocity u.

If 1 is the coeficient of friction, show that the particle comes to
rest for the first time after travelling a distance I[/(¢* + u?/gl) — u]
and after a time

\/(é) tan ! NL@D (Oxford)

28. A particle P of mass m is attached to the ends of two light
elastic strings of natural lengths / and 2/, and having moduli 4 mg
and mg respectively. The other ends of the two strings are fixed at
two points 4 and B respectively on a smooth horizontal table such
that AB = 4l. The particle is released from rest at 4. Prove that
when 0 < AP < [and when AP > [the particle executes a different
simple harmonic motion in each case, and find the period of each
motion.

Prove that the string attached at B never becomes slack during the
motion, and that the greatest distance of the particle from A is
510 + 2,/7). (London)
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MOTION IN A STRAIGHT LINE UNDER
VARIABLE FORCES

SINCE P = mf, when the forces acting on a particle vary, so will its
acceleration. This chapter is concerned only with variable motion in
a straight line. In this case, if the acceleration is a suitable function
of time, displacement or velocity, then the methods of Section 5.5
can be applied.

As an introductory example, the reader is advised to study again
Example 1 of Section 5.5.

Example 1. A train of mass 200t moves on the horizontal against
constant resistances of 75 N/t. Initially, the train is at rest and it
accelerates under a tractive force that increases steadily from 20 kN to
120kN in 50 seconds. Find the speed acquired (in km/h) and the
distance travelled.

N
75 x 200N f r
200 rroonokg——
w
Figure 10.1

The tractive force T increases steadily at the rate of

120 —- 20

— 2kKN
50 /s

Hence, after ¢ seconds
T = (20 + 2t) kN
= (20 + 2:)1 000 N.
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Considering the particle at this instant and applying P = mf
horizontally

T — 75 x 200 = 200 0001
(refer to Figure 10.1)
(20 + 2¢)1 000 — 15000 = 200 000 f

giving f=(5+ 2t)/200
. dv 5+ 2t
ie. @ 00
Integrating, v= (5t + ) + C
Nowwhen =0, v=20 . 0=0+0+C
$O v = 755(5t + ?) ()
after 50 s v = 335(5 x 50 + 50%)
50 x 55

=200 ™0

- ——5023055 x 15—8km/h

— 49:5km/h.

Equation (i) may be written as
ds _ z00(5t + 2
dt - 0 )

- 8
Integrating, s = 25 55 +3)+ A.

Takings =0, whent =0,0=04+0+ A4
s = zhotie? + o)
after 50 s s = 3$o(3 x 50% + § x 50%)
giving s = 240-6 m.

After 50 seconds the train is travelling at 49-5 km/h and is 241 m
from its starting point.

Example 2. Two particles in space are given electrostatic charges, one
a positive charge and the other a negative charge. As aresult, they are
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attracted to one another with a force u/s*, s being their distance apart.
The first particle is fixed at a point O and the other (of mass m) is
released a distance 2a from O. Show that when distant s from O, its
speed is given by
2 _ 2u(1 1

v Z_ -
mls 2a

and find the time taken to travel halfway to O.

’-—L—
, /2 : tStart
0, RIST . m l
- ot —0T - - - - -
fixed 1 !
particle 1 !
s :
————— - - - - = 22— - - — — -l
Figure 10.2

Consider the mass m when at a distance s from the fixed particle at
O (refer to Figure 10.2).
Since P = mf, towards O,

u/s* = mf
f = ums’

or since s increases away from O

U
ds ~ ms?
d
J.udv=——li —25
mJ s
v
=" 4cC
2 ms+
When s = 2a,v = 0, -
u
0O=—
m2a
u
C=———
2am



MOTION IN A STRAIGHT LINE UNDER VARIABLE FORCES

2uf1 1
¢=ﬁk__
m

s 2a

as required.
Hence

U_d_s__ 2u2a — s)
Tde Y 2mas |
the negative sign being used since the particle moves towards O.

[ e Jos = f o

Making the substitution, s = 2a cos? 6 on the left-hand side,

/[ 2ma® cos? 0 )
‘—f [W](—4a00598m0)d0=t+A
3
4 /ﬂf00526d9=t+A
u
fma?
3 .
2 /ﬂ((u S‘“z“’) —t+B
u 2

When t = 0, s = 2a, i.e. 2acos? § = 2a, giving § = 0. Substituting
these values in the equation B = 0.

3
t=2 /@—(6 + 1sin 20).
U 2

When the particle is halfway to O, s = a, i.e., 2a cos® § = q, giving
0 = n/4. Substituting these values in the equation,

N fma*|n N 1
B w4 2/
Example 3. A particle falls from rest under gravity. Taking the air
resistance as proportional to the square of the speed, find a formula

expressing the speed v as a function of time t, and a formula expressing
v as a function of the distance s fallen.
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Let the particle have mass m and since the resistance is pro-
portional to v?, its magnitude may be expressed as mkv? (refer to
Figure 10.3).

mg
Figure 10.3
Since P = mf,
vertically downwards mg — mkv? = mf
f=g— kv? ()
do
Y . kp?
1.e di g v
. dv
Integrating, J‘W = fdt,

. 1 \/é + vf )
giving log, ( t+ C.
2./ gk \/é - v\[

The integral on the left-hand side can be obtained either directly or
by splitting into partial fractions. Whent = 0,0 = Q.

0=0+C
log, (%) = 2 /gkt

e+ ok _
NIV

. _ g els/ﬁ -1
giving UV = E m

which expresses v as a function of «.
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To obtain v as a function of s, equation (i) may be written

dv
— =g — kv’
v =8 v
Integrating fgl’_d]i;2= f ds
! log. (g —kt?)=s + A4
2k ge g =S

whenv =0,5s =0

1
——log.g=0+ A4

2k
— 2 log. (g — ko?) = s — - log. g
2k 2k
—iloge (g - kyz) .
2k g
g — kv? — o2k
g
giving ¥ = %(1 — e 2k

0= /50— e

which expresses v as a function of s.
Note that as s increases e 2* tends rapidly to zero. Hence v

approaches the value ./g/k called the terminal velocity of the
particle.

EXERCISES 10

1. A particle, of mass 2 kg, moves from rest on a smooth horizontal
surface under a horizontal force which after ¢ seconds has a magni-
tude of (4 + 6t*) N. Find the speed acquired by the particle in
2 seconds.

2. A particle, of mass m, moves in a straight line under the action
of a single force ks, where s is its displacement from a fixed point O in
the line and k is a positive constant. Find an expression for the speed
of the particle in this position, assuming that it passed through O
with speed .
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3. A particle, of mass m, moves on a smooth horizontal surface
under the action of a horizontal force of magnitude mk\/E, where v
is the speed of the particle and k a constant. If, at some instant, the
particle is moving with speed u in the same direction as the force,

show that this speed will be doubled in time (2\/5 — Dut?/k.

4. A 200 g mass moving on a smooth horizontal surface en-
counters a resistance of 14v°/30 N when its speed is v m/s. Show that
its speed is reduced from 34 m/s to 1 m/s in a distance of 30 cm.

5. A car of mass 500 kg travelling at 36 km/h is slowed down by a
gentle application of the brakes. If the force exerted by the brakes
increases steadily from zero to 100 N in 10s, find the distance
travelled in this time and the speed attained. (Assume resistances to
be negligible.)

6. A load of 60 kg is pulled up a smooth plane inclined at 30
degrees to the horizontal by a rope parallel to the plane. Initially the
load is at rest and the initial tension applied in the rope is 414 N.
Then, as the load moves, the tension increases uniformly at the rate
of 120 N per metre travelled. Find the speed acquired in 1 m of
travel from rest.

7. A particle of mass m moves in a straight line with initial speed u
against a resisting force R, this being the only force acting.on the
particle. Obtain formulae for its speed v after time ¢, and its distance
x from the starting point after that time, in each of the cases

(@) R = mkt, (b) R = mk,v, (¢) R = mkyx,

where &, k, and kj are constants.

Show that one of these motions is periodic and determine the
period. (London)

8. A 60 g particle falls from rest through a medium in which the
resistance is gkv N where v is the speed of the particle. Show that
its speed approaches a terminal value.

If this terminal speed is 12 cm/s, find the value of .

9. A particle, of mass m, moves along a line under the action of a
force k sin (px), where x is its distance from a fixed point O in the
line, k and p are constants, and the force is directed towards 0. Given
that the particle is instantaneously at rest when x = g, show that the
maximum speed that it can attain is 2. /k/mp sin (3pa).

Find also the three positions nearest to O where this occurs.

10. A 200 tonne train travels on the level against resistances total-
ling 50 kN. The tractive force exerted by the engine is 1 000/v kN
when its speed 1s v m/s. Show that it accelerates from 10 m/s to
15 m/s in about 35 seconds.
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11. A mass m falls from rest m in a medium whose resistance is
mkv when the speed of the mass is v. Show that when it has reached
a speed V, it will have fallen a distance

g g |4
£ -
K2 °g°(g—kv) k

12. A particle moves from rest, at a point O, under the action of a
single force whose magnitude is inversely proportional to (1 + ¢)
where t is the time taken. The force is directed away from O. If, after
time T, its speed is U, show that after a time ¢ it will be a distance s
from O given by

slog. (1 + T) = U[(1 + t)log.(1 + ) — t].

13. A particle, of mass m, moves along a smooth horizontal sur-
face under the action of a horizontal force of magnitude mk/s, where s
is its distance from a fixed point O. The force is directed away from
O. Initially the particle was projected with speed u,away from 0, ata
point distant a from O. If v is its speed when distant s from O,
express s as a function of v.

14. A particle, of mass m, is acted on by a force mk(u — v)*> where u
is a constant and v is its speed at time t. Ifthe particle is at rest when
t = 0, find v as a function of ¢.

Find also the distance travelled in time t.

15. A particle P is moving on the axis of x, and at time ¢ its
acceleration and velocity in the direction of the positive axis of x are a
and v respectively. Show that a = v(dv/dx), where x is the displace-
ment of P from the origin.

Attimet = 0, Pisat the origin O and v = u(>0). Throughout the
subsequent motion the particle is subject to a retardation kv,
where k is a positive constant. Show that

o= ul +ukx), t= 21“(2 + ukx). (W.J.E.C, part)

16. A locomotive, of mass m, travels horizontally against resist-
ances which can be expressed in the form mbv where v is its speed. If
the tractive force exerted by the engine is of magnitude ma/v, find the
time taken to increase the speed from u, tou,. (aand bare constants.)

17. A particle of unit mass moves along a smooth horizontal
surface under the action of a horizontal force of magnitude (5 —
k\/g) N, where s is its distance (in metres) from a fixed point O on
the surface. The force is directed always away from O. If it starts
from rest at O and comes to instantaneous rest again 400 m from O,
find the value of the constant k.
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18. Oneend of a light inextensible string is attached to a particle 4
of mass 2m which lies on a smooth horizontal table. The string
passes over a small smooth pulley P at the edge of the table. To the
other end of the string is attached a particle B of mass m. At time
t = 0, the system being at rest with the string taut and PB vertical, a
variable force F is applied to A in the direction PA. If F = mg(l +
cos wt) at time ¢ and w is a constant, show that in the subsequent
motion the displacement x of 4 from its initial position in the direc-
tion P4 satisfies the equation

d%x/dt?* = 4gcos wt.

Find x in terms of g, w and t. Show that the least value of the
tension in the string is 3mg. (J.M.B,, part)

19. A particle, of mass m, moves in a straight line under a variable
force such that when it is distant s from a fixed point in the line its
speed v is given by av® = s(b — v). Show that the resultant force
acting on it at this instant is

m(b — v)?
a(2b — v)’

. Find the time taken for the particle to increase its speed from 0 to
3b.
20. A particle moving in a straight line passes through a point O
on it with a speed of 6 cm/s. It is acted on by a force which increases
in direct proportion to the square root of the time taken from O, and
is zero at 0. The force is directed away from O. If the particle is
6% cm from O after 1 second, how far from O will it be after 4 seconds.

21. A particle, of mass m, is projected vertically upwards under
gravity with initial speed u. The resistance to motion is mkv? where v
is the speed at time r. Find the greatest height attained and the time
taken to get there.

22. A particle, of mass m, moves along a straight line under the
action of a force mk?2s, where s is its displacement from a point O in
the line. If the particle starts from rest at a point distant a from O,
show that

ds _ 2 _ 2
dt

Verify that s = a(e® + e ) is a solution of this differential
equation satisfying the initial conditions. Find the time taken for the
particle to double its initial distance from O.

23. A particle P is moving along the axis of x and at time ¢ its
acceleration and velocity, in the direction of the positive axis of x,
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are a and v respectively. Show that a = vdv/dx where x is the
displacement of P from the origin.

A particle moves with velocity v in a horizontal straight line
against a resistance v*? per unit mass. Its initial velocity is ¥V, and
after a time ¢ this has been reduced to kV; its distance from the
initial position is then x. Prove that

x = k'12W.

Show also that the particle is never brought to rest and that its
distance from the initial position is always less than 21/ 1/2,
(WJ.E.C)
24. The only force acting on a particle moving in a straight lineis a
resistance mk(c? + v*) acting in that line; m is the mass of the
particle, v its velocity and k, ¢ are positive constants. The particle
starts to move with velocity U and comes to rest in a distance s its
speed is U when it has moved a distance 4s. Show that 63¢% = U2
Show also that when the distance moved is x

2
63% —64e 2 . (JM.B)

25. A particle, of mass m, is projected from a point O with velocity
u. Thereafter it moves under the action of a force F, where F =
mau sin (nt)/u at any time ¢ (a, n are constants and u = |u}). Find the
distance of the particle from O when t = .

26. A particle of unit mass lies on a rough horizontal table and is
repelled from a fixed point O on the table by a force kr 2, where r is
the distance from O. The particle starts from rest when » = a and
comes to rest again when r = na. Show that n = k/uga?, where p is
the coefficient of friction. (London, part)

27. A particle is projected vertically upwards with velocity u. The
air resistance is proportional to the velocity, and is initially equal to 4
times the weight of the particle. Prove that the particle reaches a
height

u?

—[4 — log. (1 + 4

Azg[ 8. ( )]
and that the time taken to reach this height is

u

— log. (1 + A).

Jg &+ (Oxford)
28. Two particles of masses M and m (M > m) are connected by a

light string which passes over a smooth fixed peg and hangs vertically
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on each side. The air resistance on each particle is kv> when the
speed is v. Show that, if the resisted motion under gravity could
continue indefinitely, the speed would tend to a limiting value V,
where

(M — m)g
2%

Show that the accéleration of either particle, at speed v, has
magnitude

V:=

(M — m)(V? —v?)
M + mV?

Find the distance moved by either particle in attaining a speed of

1V from rest. (J.M.B)

29. A particle of unit mass starts from rest at a point 4 and is

attracted towards a fixed point O by a force k/x?, where x is the

distance from O and k is constant. If 04 = q, find the speed of the

particle on reaching a point between O and A at a distance b from O
and show that the time taken to this point is

a ° X
\/EI;L \/a—xdx'

Using the substitution x = a sin? 6, or otherwise, show that, if T is
the time taken to reach the mid-point of OA,

L — (n + 2)%a®
T 32T?

30. A particle is projected along a rough horizontal surface with

speed u. p is the coefficient of friction and the air resistance per unit

mass is gkv?, when v is the speed. Find the distance travelled before
it comes to rest and the time taken.

g.

(London)
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11
EQUILIBRIUM OF A PARTICLE

11.1. RESOLUTION OF FORCES

A particle is said to be in equilibrium if it is at rest or moving with
uniform velocity. Consider a particle in equilibrium under the
action of forces F,, F,, F.... The particle has zero acceleration
hence from P = mf we have

ZFZO L)

The vector sum of the forces on a particle in equilibrium will be
zero whatever the units in which the forces are measured, provided
they are all measured in the same units. It is convenient in equili-
brium problems to measure the forces in terms of the weight of unit
mass of the particle. Thus a kilogramme weight (kg wt.) is the
gravitational attraction on a mass of 1 kg placed in the position of
the particle. Answers to problems have been given in these units. If
it is required to convert to SI force units, we note that 1 kgwt. = g
newton where g is the magnitude of the local gravitational constant.

If each force F is resolved in three non-coplanar directions deter-
mined by the unit vectors 4, b, é, so that

F = Fid + F,b + F3¢,
then equation (i) becomes
S(Fid + Fb + F;6) =0

or ZFl = 0, ZFz = 0, ZF:; = 0

That is, if a particle is in equilibrium, the sums of the resolved parts
of the forces in three non-coplanar directions are separately zero.
The converse is also true, that if the resolved parts of the forces in
three non-coplanar directions are separately zero, then the particle
is in equilibrium. [In the case of coplanar forces it is sufficient that
the sums in any two non-parallel directions are zero.] In practiceitis
usually desirable to resolve in mutually perpendicular directions.
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Example 1. A particle of mass 2 kg is placed on arough plane which is
inclined at 30 degrees to the horizontal. A force of 2 kg wt. acts on the
particle in a direction parallel to and up the plane. If the particle is
just about to move up the plane, show that y = 1/\/5 where p is the
coefficient of friction.

R 2 kg wi.
F
30°
‘ 2 kg wt.
Figure 11.1

Let R be the normal reaction of the plane on the particle. Since
the particle is about to slip up the plane, the frictional force F acts
down the plane. Since the particle is about to slip, F = uR.

Resolving along the plane (refer to Figure 11.1)

UR +2sin30 -2 =0

Resolving perpendicular to the plane
R —2c0s30°=0

R=./3 ... (i)

Substituting from equation (ii) in equation (i)
U3+ 1=2
U3 =1

w=1./3

Example 2. A light inextensible string whose length is greater than AB
is attached at its ends to two fixed points A, B on the same horizontal
level. The string is threaded through a small smooth ring C of weight
4 W which can move freely on the string. The ring is pulled aside by a
horizontal force 3 W in the vertical plane through AB. In equilibrium
/_ABC = 80degrees and the vertical through C passes between A and
B. Find the inclination of AC to the horizontal and the tension in the
string.
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Let / BAC = ¢ and T be the tension in the string. Since the ring
C is smooth, the tension in each portion of the string AC and BC is
T.

Figure 11.2

Resolving horizontally (refer to Figure 11.2),

Tcos¢ — Tcos80° — 3W = 0.
Tcos¢p — Tcos80° =3W (i)

Resolving vertically

T'sin¢ + T'sin 80° — 4W = 0.
Tsin ¢ + T'sin 80° = 4W <. (i)
Dividing equation (i) by equation (ii),
cos ¢ — 01736 3
sin ¢ + 09848 4
4cos¢p — 06944 = 3sin ¢ + 2:9544
4cos ¢ — 3sin ¢ = 3-6488
Scos(¢ + &) = 36488
where 5cose = 4 and 5sing = 3, hence ¢ = tan™ '3 (0 < ¢ < 7/2)
and ¢ = 36° 52",
5cos (¢ + 36°52') = 36488
cos (¢ + 36° 52') = 0-7298
¢ + 36°35 =43¢
¢ = 6°16'.
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Substituting in equation (i)
Tcos 6° 16" — Tcos 80 = 3W
T09941 — T01736 = 3W
3w
~ 08205
T = 3-66W.

The tension in the string is 3-66W and AC is inclined at 6° 16" to
the horizontal.

11.2. THREE-FORCE PROBLEMS

Problems about a particle in equilibrium under the action of three
forces can, of course, be solved by the general method of resolving
described in the previous section. However, in the three-force case,
calculations using a vector diagram may be more convenient.

We have seen that, when a particle is in equilibrium, the vector
sum of the forces acting is zero. Hence they can be represented by
the sides of a closed polygon taken in order. If there are only three
forces, this polygon is a triangle which is particularly suitable for
trigonometrical calculation.

So, instead of resolving, we may if convenient obtain our two
equations from the trigonometry of the vector triangle.

2 kg wt.

Space diagram Vector diagram
Figure 11.3

Example 1. A particle of mass 2 kg hangs vertically on the end of an
elastic string of modulus 4kgwt. and natural length 0.5m. The
particle is pulled aside by a horizontal force F until the string is 1 m
long. Find the inclination of the string to the vertical and the magnitude
of F.
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Since the string is elastic
T = ix/l
=4 x 0:5/0:5
= 4 kg wt.

The vector diagram is a right-angled triangle (refer to Figure 11.3).
Hence we may apply Pythagoras’ theorem and

F=/T?-22
_ 42 _ 22
F =2/3kgwt
Also, from the vector diagram

cos§ =2/T
=2/4

I
N e

0 0°.

The string is inclined at 60 degrees to the downward vertical and
the horizontal force is of magnitude 2\/3 kg wt.

N0

S \30°7
S 2, <]

Y

30° ST +30°

‘2 kg wt.

Figure 11.4
Example 2. This is an alternative approach to Example 1 of Section
11.1, in which the number of forces is reduced to three. This is done

by replacing the normal and frictional reactions by their resultant S,
the total reaction of the plane on the particle.

Since the particle is about to slip, 1 is the angle of friction (refer to
Section 7.4) and tan A = p.
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The vector triangle, having two sides equal, is isosceles. Hence
the base angles are equal; (referring to Figure 11.4) we have

2(A + 30°) + 60° = 180°
giving A= 30°
4 = tan 30° = 1/\/3.
Example 3. A particle of mass 3kg hangs in equilibrium supported
by two strings inclined at 25 degrees and 50 degrees, respectively,

to the horizontal. Find the tension in each string.

40°

75¢°

_650

3 kg wt. n
Figure 11.5

Applying the sine rule to the vector triangle (refer to Figure 11.5),

n T, 3
sin40°  sin 65°  sin 75°
3 sin 40°
= =1997k .
! sin 75° 1997 kg wt
3 sin 65°
= =2816k ;
and 2= 75 2 g wt

The tension in the string inclined at 25 degrees to the horizontal is
2:00 kg wt., and in the other string 2-82 kg wt.

Exercises 11a

(At this stage the reader is recommended to solve three-force
problems both by resolving and by means of the vector triangle.)

1. A particle of mass 9 kg hangs froma point on a light inextensible
string. It is pulled by a horizontal force of 3\/3 kg wt. so that it is
in equilibrium with the string inclined at an angle 6 with the down-
ward vertical. Find 0 and the tension in the string.

2. A particle rests in equilibrium on a rough plane inclined at
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an angle o to the horizontal. If A is the angle of friction between the
particle and plane, show that « < 4.

3. Aand Baretwo points at the same horizontal level 80 cm apart.
A light elastic string of natural length 40 cm is stretched between
A and B. When a mass of 90 g is attached to the mid-point of the
string, it falls and eventually comes to rest 30 cm below AB. Find
the modulus of the string,

4. A small ring of weight W can slide on a smooth circular wire of
radius r fixed in a vertical plane. It is tied to the topmost point of
the wire by a light inelastic string of length 4r/3. Find the tension
inthe string and thereaction between ringand wire in the equilibrium
position.

5. Three forces P, Q, R act on a particle which is in equilibrium.
The angle between P and Q is 150 degrees, between @ and R is
120 degrees. If P = 3. /3 kgwt, find Q and R.

6. A particle of mass 70 kg is placed on a smooth plane which is
inclined at an angle of 30 degrees to the horizontal. The particle
is kept in equilibrium by a horizontal force F. Find the magnitude
of F and of the reaction of the plane.

7. If in Question 6 the force F acted parallel to the plane, find its
magnitude.

8. A particle of weight 13 kg is suspended by two strings of length
12 m and 0-5 m from two points, 4 and B, on the same horizontal
level. If 4 and B are 1-3 m apart, find the tension in the strings.

9. A light inextensible string has one end A attached to a fixed
point and the other end B to a small smooth ring of negligible weight.
Another similar string CBD has one end attached to a fixed point C
on the same horizontal level as A4, passes through the smooth ring B
and supports a freely hanging weight W at its other end. In equilib-
rium, AB is inclined at 65 degrees to the vertical, find the tension
in AB.

10. Prove Lami’s Theorem: If a particle is in equilibrium under
the action of three forces, the magnitudes of each of them are
proportional to the sine of the angle between the other two.

11. A particle of mass 100 g rests on a rough plane which is
inclined at an angle of 60 degrees to the horizontal. A force F is
applied up the plane. If the coefficient of friction between the particle
and the plane is 0-75, find the magnitude of F when the particle is on
the point of slipping up the plane.

12. A particle of weight w rests on a rough plane which is inclined
at an angle « to the horizontal, « > A where 1 is the angle of friction
between the particle and the plane. A horizontal force F supports
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the particle which is just about to move down the plane, show that
F = wsin (o« — 1) sec 4.

13. If, in Question 12, the magnitude of the horizontal force F
is increased until the particle is just about to move up the plane, find
the new magnitude of F in terms of w, « and A.

14. A light inextensible string of length 0-5 m has one end firmly
attached to a point A of a rough horizontal rail. The other end is
attached to a small ring, B, of weight W, which can slide on the
horizontal rail. A weight 4W is attached to the mid-point of the
string. If the coefficient of friction between the rail and the ring
is 2, show that for the system to be in equilibrium AB < 0-3 m.

15. A string of length a has one end A tied to a fixed point and the
other end Bto asmallsmoothring. A second string CBDhas one end
attached to a fixed point C, where AC is horizontal and AC = 6aq,
passes through the ring and supports a weight Whanging freely from
the other end D. Show that in equilibrium CB and BD are equally
inclined to AB, and that AB is inclined to the vertical at an angle
sin”!' (3). Find the tension in AB. (London)

11.3. HARDER EXAMPLES

When a system of particles is connected by light inextensible strings
or light rods, the forces on the particles can often be obtained by
considering the equilibrium of each particle separately.

Figure 11.6

Example 1. Three particles of weights wy, w,, wy, are attached at
points B, C, D of a light inextensible string which hangs from two
points A and E, at the same horizontal level. In equilibrium the system
hangs symmetrically with AB, DE, each inclined at an angle o to the
horizontal and BC, CD each inclined at an angle 8 to the horizontal.
Show that

cota Wy

cot 8 - 2w, + wy)
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If ABCDE has the form of half a regular octagon, deduce that
wi/w, =1+ /2[cot 224° = 1 + /2].

Let T;, T, be the tension in AB and BC and hence by symmetry
they are the tensions in ED and DC respectively.

Consider the equilibrium of particle w, at C. Resolving vertically
(refer to Figure 11.6).

2Tzsinﬁ_W2=0 ..(1)

Consider the equilibrium of particle w, at B.
Resolving vertically

Tysinag — Thsinff —w, =0 e (1)
Resolving horizontally
Ticosa — T,cos =0 ... (i)

From equations (1) and (1i)
Tysina — dw, = w,
Tysina = w, + 3w, oo (i)
Substituting for T; and T; from equations (iv) and (i) in equation (iii)
w osa = Lcos B
sin o 2sin B

w
(w, + 4wy)cota = fcotﬁ

cota W
cotf 2w, + wy)

The internal angle of a regular octagon is 135 degrees. Therefore,
by symmetry (refer to Figure 11.6).

28 + 135° = 180°

g =225

also o + 135° — = 180°

) o = 67-5°
w, _ cot 67-5°

2w; + w,  cot 22:5°
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1 1
Now cot 0 = tan®  cot(90° — 0)
wy 1

2wy + wy = cot? 22:5°

1
S +2?
1

T3 +22

3+ Zﬁ)wz = 2w, + w,
Q2 + 22w, = 2w,

o1+ 2

Wy

Example 2. A rough circular wire of radius r, centre O, is fixed in a
vertical plane. Two rings A and B each of mass m can slide on the wire
and are joined by a light elastic string of natural length r and modulus
0-5mg. AB is horizontal and above O and the two rings are about to
slipupwards. If angle AOB = 20, provethat 2sin0 = 1 + 2tan(0 + 2)
where u (= tan A) is the coefficient of friction between a ring and
the wire.

8
99
R
Figure 11.7

Let T be the tension in the elastic string,
T = 0:5mg(2rsin 0 — r)/r (refer to Figure I1.7)
T = 05mg(2sinf — 1). o 1)
Let R be the reaction of the circular wire on the ring, its direction
will be radially outwards. Since the rings are about to slip upwards,
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the frictional force on the ring will be uR tangentially downwards
(refer to Figure 11.7).
Resolving horizontally

T — Rsin@ — yRcos68 =0 RN (11
eliminating T from equations (i) and (ii)
mgsin@ — 0:5mg = Rsinf + uRcos 0 Lo (1dd)
Resolving vertically
mg = Rcos8 — uRsin @ e (iv)
dividing equation (iii) by equation (iv)

sin @ — 0-S = (sin 6 + ucos O)/(cos § — p sin 6)

tan 6
sinf — 05 _fanb+p
1 - putané
but i =tani

sinf — 05 =tan (6 + A)
2sinf@ =1+ 2tan (0 + A).
Example 3. Find the least force that will support a particle of weight

W on a rough plane inclined at an angle « to the horizontal. The angle
of friction between the particle and plane is 1 A< a)

P
90-(8-¢)
S w
(- &)
fw
Force diagram Figure 11.8 Vector diagram

Since 4 < a, the particle will tend to slip down the plane and
must be supported by a force of magnitude P, inclined at an angle 0
say, to the plane as shown in Figure 11.8.

P will be a minimum when the particle is about to slip (and ¢ = A),

-and 6 has an optimum value. Thus putting ¢ = A, we have to find
P as a function of 6, and choose 0 to make P a minimum.
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Applying the sine rule to the vector diagram

P _ 74
sin(a — ¢) sin[90 — (0 — ¢)]
_ Wsin(x — ¢)
cos (@ — ¢)
Wsin (a0 — 4)
or = m
since ¢ = A

As @ varies, cos (8 — )hasa maximum value of 1 when (8 — 4) = 0.
Hence the force P will have a minimum value of Wsin(ax — /)
when 8 = A.

Exercises 11b*

1. Two small particles each of weight W are connected to a light
inextensible string ABCD at points B and C. The string hangs
freely in a vertical plane with its ends A and D connected to two
points on the same horizontal level. If in the equilibrium position
BC is horizontal and ABCD has the form of half a regular hexagon,
find the tensions in the three strings AB, BC, CD.

2. A particle, weight W, rests on a rough plane which is inclined
at an angle o to the horizontal. 1 is the angle of friction between the
plane and the particle. A force F acts on the particle in an upward
direction making an angle 6 with the plane, # being measured in
the same direction as . Show that when the particle is on the point
of moving up the plane, F = Wsin (x 4 4)/cos (6 — 4).

Deduce the minimum value of F as 0 varies.

3. Two rough rods OA, OB are fixed at right angles, OA4 being
vertically downwards. Two small rings of weights 3W and 4W can
slide on the two rods, the one of weight 3% on O A, the other on OB.
The rings are joined by a light inextensible string and u (= 1) is the
coefficient of friction between each ring and the rod. Prove that in
equilibrium the greatest inclination of the string to the vertical is
tan ! () and find the tension in the string in this position.

4. A triangular wedge has two equally rough surfaces inclined in
opposite directions at 60 degrees and 30 degrees to the horizontal.
Two particles of weights 3 kg and 2 kg rest on the two surfaces and
are joined by a light inextensible string passing over a smooth pulley
at the vertex of the wedge. The string lies in a vertical plane which
intersects the two surfaces in lines of greatest slope. If the heavier

* Exercises marked thus, ¥, have been metricized, see Preface.
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particle rests on the steeper surface, and is just about to slip down-
wards, find u the coefficient of friction between a particle and a
surface of the wedge.

5. A and D are fixed points on a horizontal ceiling at a distance
52 cm apart. A light string ABCD (of length greater than 52 cm) is
attached to 4 and D at its ends and carries weights Wg and 12 g
at B and C respectively, where AB =24cm and CD = 24cm.
When hanging in equilibrium, 4B is inclined at 45 degrees to the
horizontal and CD is inclined at 60 degrees to the horizontal
Calculate (a) the inclination of BC to the horizontal, (b) the value
of W. (London)t

EXERCISES 11

1. A particle is in equilibrium under the action of forces, F;, F,,
Fiand F,. IfF, =3i —4j — k, F, = j + 2k, F3 = —4i + 4 — k,
find F,.

2. A particle of weight W hangs on the end of a light inelastic
string. It is held in equilibrium with the string inclined at an angle 0
to the vertical by a force F applied at right angles to the string.
Find F and the tension in the string.

3. Find the least force required to move a particle of weight W
along a rough horizontal surface if the angle of friction between the
particle and the plane is 4.

4. A smooth circular wire is fixed with its plane vertical. A small
bead of weight W is threaded on the wire and tied to its topmost
point by an elastic thread, whose natural length is equal to the radius
of the wire. If there is a position of equilibrium with the string
stretched and inclined at an angle 0 to the vertical, find the modulus
of the string.

5. A weight of 100 g is suspended by two light inextensible strings
of lengths 18 cm and 24 cm to two fixed points A and B on the same
horizontal level. If AB = 30 cm, find the tensions in the strings.

6. A light inextensible string of length 4 m has its ends attached to
two points, 4 and B, 2 m apart on the same horizontal level. A
smooth ring of weight 8 kg is threaded on the string and held in
equilibrium vertically below B by a horizontal force F. Find the
magnitude of F and the tension in the string.

7. A particle of weight 5 kg rests in equilibrium on a rough plane
which is inclined at 15 degrees to the horizontal. A force of 3 kg wt.
is applied to the particle’in a direction parallel to and down the plane.
If the particle is just about to move, find u the coefficient of friction
between the particle and the plane.
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8. Alight inextensible string has one of its ends attached to a fixed
point 4 and the other end B to a small smooth ring of negligible
weight. A similar string CBD has its end C attached to a fixed point
on the same horizontal level as A4, passes through the smooth ring
at B and supports a freely hanging weight W at its other end D.
In equilibrium the tension in AB is 0-75W, find the inclinations of
AB and BC to the vertical.

9. A rough circular wire of radius r, centre O is fixed in a vertical
plane. Two rings each of mass m can slide on the wire and are joined
by a light elastic string AB of natural length r and modulus mg.
AB is horizontal and below O and the two rings are just about to slip
downwards. If / AOB = 28, prove that 2sin 6§ = 1 — tan (6 + A).

10. A long light string is tied at one end to a fixed point A. The
string passes through a small smooth fixed ring B distant a from A
and at the same level as 4. A particle of weight 2W is attached to
the other end of the string and hangs freely. A smooth bead C of
weight 3W is free to slide on the string between 4 and B. Show that
in the equilibrium position AC and BC are each inclined at an
angle cos ! 3 to the vertical.

The bead C is now fixed to the string at a distance a from A.
Show that in the new equilibrium position (when C is not at B) the
inclination of BC to the verticai is

cos ! (——\/E h 1)
e )

(London)
11. Show that, if a set of coplanar forces acting at a point is in
equilibrium, the forces may be represented in magnitude and
direction by the sides of a closed polygon taken in order. A light
inextensible string of length greater than AB is attached at its ends
to two fixed points 4 and B at the same horizontal level. A small
smooth ring C of weight SW is threaded on the string and hangs
below AB. C is pulled aside by a horizontal force W in the vertical
plane through AB. In equilibrium the angle CAB = 30 degrees
and the vertical through C passes between 4 and B. Find graphically
or otherwise (a) the angle CBA (b) the tension in the string.
(London)
12. A small ring 4 of weight W is constrained to slide on a rough
horizontal rail, the coefficient of friction between the ring and the
rail being u. One end of a weightless inextensible string of length 2/
is tied to the ring while the other end is secured to the rail at a
point B such that AB = 2x. A weight 4W attached to the mid-point
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C of the strings hangs in equilibrium. Show that
< 3ul
X 5
{4+ 9’}

The ring is just about to slide on the rail when an additional weight
2W is hung from C. If /_BAC = 60 degrees, find p. (W.J.E.C)
13. A light elastic string is attached at its ends to two fixed points
in a horizontal line, the distance between the points being equal to
the natural length of the string. A particle of weight W, attached to
the mid-point of the string, hangs freely in equilibrium when each
half of the string makes an angle 30 degrees with the horizontal.
Show that the modulus of elasticity of the string is W(3 + 2,/3).
If the weight of the particle is increased by an amount w so that
each half of the string makes an angle 60 degrees with the horizontal
when in the new equilibrium position, find w in terms of W.
(London)
14. A particle of weight W is attached by two light inextensible
strings each of length a to two fixed points distant a apart in a
horizontal line. Write down the tension in either string.

One of the strings is now replaced by an elastic string of the same
natural length, and it is found that in the new position of equilibrium
this string has stretched to a length 5a/4. Prove that the modulus of
elasticity of this string is 7W/V@, and show that the tension in the

other string has been increased in the ratio 5 :v@. (London)

15. Alight inextensible string A BC D has two particles of 10 kg wt.
and Wkgwt. attached at B and C respectively. The ends of the
string are attached to points A and D at the same horizontal level. In
the equilibrium position, AB, BC and CD are inclined at angles of
30, 60 and 60 degrees respectively to the vertical. Find the value of
W and the tensions in the strings.

16. A triangular wedge has two equally rough surfaces S, S,
inclined in opposite directions at angles o and j to the horizontal
respectively. A particle of mass M rests on S; and another of mass m
on S,. The particles are joined by a light inelastic string which
passes over a smooth pulley at the vertex of the wedge. If M is about
to slip downwards and tan A is the coefficient of friction between a
particle and a surface of the wedge show that

m  sin(x — 4)
M sin(B + A

17. Two small rings P and Q, of weights w, and w,, respectively

(w; > w,), can slide on a smooth circular wire, centre O, fixed in a
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vertical plane. They are connected by a light string which, in length,
is less than the diameter of the circle. When the rings are in equili-
brium with P higher than @, and with the string taut and above O, the
angle POQ is 2o If the string makes an angle 6 with the horizontal,
prove that

(w, + wy)tan g = (w; — w,)tana.
Show also that the tension in the string is
2w w, sin a
JW: + w3 + 2w w; cos 2a)’

(WJ.E.C)

Figure 11.9

18. Figure 11.9 shows two fixed planes each inclined at an angle o
(< 30°) to the horizontal. Two particles, each of weight W, rest one
on each of the planes and are connected by a light inextensible string
which passes over a small smooth pulley at the top of each plane and
carries a smooth ring of weight W which hangs down between the
planes. The coefficient of friction between the particles and the
planes is . Prove that, if 6 is the inclination of the string to the
horizontal then, provided that the string is long enough and that
u > +seca — tan a, there will be equilibrium if

cosec 0 < 2(sina + pcos ).

What happens if 4 < 3 seco — tana? (Oxford)

19. Three light connected strings AB, BC and CD have a weight
W attached at B and a weight 2W at C. AB s an inextensible string
of length a. BC and CD are elastic strings each of natural length a
and of the same modulus of elasticity. 4 and D are fixed to points at
the same horizontal level. The system hangs freely with CD at
60 degrees to the horizontal and BC perpendicular to CD. Find the
tensions in BC and CD in terms of Wand the inclination of ABto the
horizontal.

Show that the distance AD is a(l + \/3) and find the modulus of
elasticity of the elastic strings. (London)
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20. Two small rings 4, B, each of weight W, are threaded on a
fixed rough horizontal wire. The rings are connected by a light
inelastic string, of length 24, to the mid-point C of which is attached
a particle of weight 2W. The system rests in equilibrium with
/ ACB = 28.

(a) Find the tension in each part of the string.

(b) Find, in terms of W and B, the normal reactions and the fric-
tional forces between the wire and the rings. (The directions of the
frictional forces acting on the rings must be clearly shown in a

diagram.)
If the coefficient of friction between each ring and the wire is 3,
show that AB < 64/5. (J.M.B)

21. Two small rings of weights 3w and Sw are capable of sliding
on a smooth circular wire of radius « fixed in a vertical plane. The
rings are connected together by a light inextensible string of length
8a/3 which passes over a smooth peg fixed at a height a/3 vertically
above the highest point of the wire. The rings rest on opposite
sides of the vertical through the peg. Find the reaction of the wire
on each ring and show that the tension in the string is 15w/4.

If the wire is uniform and of weight w, find the horizontal and
vertical components of the external force required to keep the wire in
position, indicating the directions clearly. - {London)

22. A light inextensible string PQ is attached by its ends to two
points at the same horizontal level. Five equal particles are attached
to the string at points A, B, C, D, E. The system hangs in equilibrium
with the horizontal projections of PA, AB, BC, CD, DE and EQ all
equal to a. If the depth of C below PQ is 34, find the inclinations to
the horizontal of PA, AB, and BC.

23. Two beads 4 and B, of mass m and 3m respectively, are
threaded on a rough straight horizontal wire; the coefficient of
friction between each bead and the wire is u. 4 and B are joined by a
smooth string on which a bead C, of mass 2m, can slide freely. Show
that, when the bead C hangs in equilibrium under the wire, the
strings AC and BC are equally inclined to the horizontal. Show also,
that when A and B are at the greatest distance apart consistent with
equilibrium, ‘

(a) the friction is limiting at 4 but not at B,

{(b) angle BAC = cot ! 2.

A horizontal force is now applied at B in the direction BA. Find
the value of this force when the bead Bis also on the point of slipping.
(WIJE.C)
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12
WORK, POWER AND ENERGY

12.1. WORK DONE BY A CONSTANT FORCE

Definition—When the point of application of a force F, constant in
magnitude and direction, is given a displacement Jr, then the work
done by Fis given by W = F . jr.

Figure 12.1

Hence, W = Fér cos 8 where 8 is the angle between F and or (refer
to Figure 12.1). Thus the work done by F may be regarded either as
the product of the force and the projection on it of the displacement,
or as the product of the component of the force in the direction of the
displacement and the distance moved. .

In particular, if dr is perpendicular to F, W =0, and if Jr is
parallel to F, and in the same sense, W = For (if or is parallel to F
and in the opposite sense, W = — For).

SI unit of work ... N m = joule (J)

If a system of constant forces, Fy, F,, F3, ..., F,,acts on a particle
which undergoes a displacement Jr, then

Work done = F,.0r + F,.0r + ... F,. 0r

= (). F).dr (by thedistributive law for scalar products
refer to Section 3.8)

=P.or

where P is the resultant of the system of forces, Fy,..., F,, and the

198




WORK DONE BY A CONSTANT FORCE

work done is the same as if the system of forces was replaced by its
resultant.

If a single constant force F acts on a particle which undergoes
several displacements, ér,, or,, ... dF,,

Work done = F.ér, + F.ér, + ... + F.ér,

= F.(Zér) (by the distributive law for scalar multi-
plication).

The work done is equal to the scalar product of Fand the vector sum
of the displacements.

Example 1. A particle moves from a point with position vector 2i — j
to a point with position vector 3i + j + 2k. Among the forces acting
on it is a force F = 2i — 4j — 3k which remains constant throughout
the motion. Find the work done by F.

The displacement of the particle
or=Ci+j+2k)—Qi-)
=i+ 2j + 2k

By definition, the work done by
F=F.or
=2 —4j — 3k).(i + 2 + 2k)

= —12 units.

Figure 12.2

Example 2. A particle on a string is pulled a distance s up a plane
inclined at an angle a to the horizontal. The forces acting on it are
the tension T in the string, its weight W, the normal reaction N, with the
plane and the frictional reaction F. Write down expressions for the
work done by each of these forces.
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Using the formulae W = For cos 0, we have
work done by T = Ts,
work done by W = Wscos (90° + a) = — Wssina
work done by F = —Fs
work done by N = 0.

When the work done by a force is negative (= —x say), then x is
called the work done against the force. For example, in the above
problem, the work done against the weight is Ws sin o and the work
done against friction is Fs.

If a body can be said to exert a force F, then the work done by F is
often called the work done by the body. For example, in order to
raise a mass m through a height h, a man must exert a force at least
equal and opposite to the weight mg of the particle. Then the work
done by the man is mgh.

Example 3. One side of the roof of a bungalow is rectangular in shape
and slopes at 45 degrees to the vertical. It is covered with 50 rows of
tiles each containing 60 tiles. A tile measures 13 cm % 20cm and
weighs 6kg. Find the work done, against gravity, in brlnglng the tiles
from the eaves to their final positions on the roof.

Do
-13(:"‘?-20cm* Eaves
Figure 12.3

The weight F of a tile is 6g N acting vertically downwards and the
displacement r; of a tile of the kth row is of magnitude 13k cm or
0-13k metres in a direction at 45 degrees to the vertical.

Work done in bringing one tile into position = F. r,.
Each tile in a given row is displaced the same amount.
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Work done in brinéing the kth row into position = ) F.r,
1

-[5H)

— 60F. 1,
Total work done in;bringing all the _ &
rows into position = kgl 60F . r,
50
=60F .Y n
k=1

50

= 360g( y 0-13k) cos 45°
k=1

= 46'8g/\/§(:§1 k).

Now

k230 0.51
Y k=1+42+...+50= 5—2— (Sum of an A.P))

1

468 x 9-8 50.51

2 2

= 41340).

Total work done =

The work done in bringing all the tiles from the eaves is 41-34 kJ.

Example4. A pit shaft of rectangular cross-section3 m x 4 misto be
sunk 70 m into the ground. The average density of material removed
from the shaft is 900 kg/m>. Find the work done against gravity in

excavating the shaft, assuming that the material moved is spread thinly
on the ground.

Consider a layer of earth x m down of thickness dx.

Its volume = 3 x 4 x dx m3
its mass = 3 x 4 x ox x 900
— 10 8006x kg,

The force required to lift it against gravity is 10 800g dx N.
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Work done = 10 800g dx x J.

70

Total work done = lim ) 10 800gx dx

x—0 O

70
= f 10 800gx dx

0

27170
=10 800g|:x7]

0

= 2583 x 107 .
The work done in excavating the shaft is 258-3 MJ.

Figure 12.5

12.2. WORK DONE BY A VARIABLE FORCE

In the general case of a variable force F whose point of application
moves along a curve from A to B, consider the curve to be split into
n separate portions by the points L, M . .. (refer to Figure 12.5).
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Let or,,0r,,..., represent the displacements ;ﬁ:, f]\_/i, L If
F,,F,,..., are the values of the variable force F at some points in
dry,0r,,...,then in moving from 4 to B along the curve,

Work done = F, .or; + F,.0r; + ...
B
==Y (F.or).

In the limit as n — oo and each displacement — 0,

B
work done = lim ) (F. ér)

R 4

B
=f F.dr.
A

This integral is known as the line integral along ﬂe curve. We shall
only consider cases in which the displacement 4B is a straight line.

Example. A body of mass 50kg is pulled in a straight line along a
smooth horizontal surface from A to B by a force F. F acts in the
direction from A to B and is of magnitude 2(2 — x/100) N, where x cm
is the distance of the body from A. 1f AB = 100 m, find the work done
by F.

B
Work done = j F . dx.
A
Since F is the direction of A4 to B, i.e. of dx,

B

work done = f Fdx

A

100 X
= 202-24]d
fo (2 100) *
x2 100
=2|2x — —
2[ * 200}0

| -2

= 3001J.

THEOREM

The work done by the tension in a spring or elastic thread, when its
extension is reduced from x; to x,, is A(x3 — x})/2L.
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Consider the spring when its extension is x and a free end is at P,
the other end being fixed at Q (refer to Figure 12.6).

A - —-—X -~
+ .- - — -
//(i;—~—1——~n-x,-.A P '8
- — - - — = xz ————— -~
Figure 12.6
By Hooke’s law the tension T = — Ax/l. Hence the work done as
P moves from Bto A is given by
W=f T.dx
= sz —ﬁ;‘c) dx
I E
1 T
fr2 L2
Work done by T = A(—xzzlixl)

Exercises 12a

1. P,Q, Rare three points whose position vectors are a,a + b and
2a — b respectively. A particle moves from P to Q and then to R.
Among the forces acting on the particle is a force F = k(a + 2b).
Find the work done by F as the particle moves (@) from P to Q, (b)
from @ to R and (c) from R to P again.

2. Two forces F; = 2i + jN and F, =i — 3j N act on a particle
which is given a displacement 15/ — 10j metres. Find the work done
by each force and the work done by their resultant.

3. A cartis pulled a distance 2 m up an inclined plane by a force F
whose magnitude is 50 N and whose direction is inclined at an angle
of 20 degrees to the plane. Find the work done by F on the cart.

4, A man and his equipment weigh 80 kg. He climbstothetopofa
mountain 1 000 m high, how much work does he do against gravity?

5. A boy cycles 20 km. If the resistances to motion average 25 N,
how much work does he do against the resistances?

6. A man and his cycle weigh 100kg. He travels 0:5 km up an
incline of sin™!(4;). Find the work done against gravity. If, in
addition to gravity, the other resistances to motion total 20 N, find
the total work done by the cyclist.
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7. Find the total work done against friction and gravity when a
mass of 200 g is pulled a distance of 35 cm up a rough plane. The
plane is inclined at 30 degrees to the horizontal and the coefficient

of friction between the mass and the plane is 2/\/5.

8. A man and his cycle weigh 100 kg. To travel at a constant
speed, a distance of 400 m down an incline of sin " ! (i15) the man
has to do 1200 J of work. Find the resistance to his motion.

9. A Venetian blind consists of a top fixed bar and 31 movable
bars each of mass 100 g and of negligible thickness. When the blind
is fully extended, the distance between each pair of consecutive bars
is 8 cm. Find the work done in pulling up the blind.

10. A rectangular section of roof is covered by 20 horizontal rows
of tiles each row containing 30 tiles. The section of the roof slopes
at 40 degrees to the vertical and each tile weighs 5 kg and measures
45cm x 30cm. Find the work done against gravity in bringing the
tiles from the eaves to their final position on the roof.

11. A bucket of mass 10kg is attached to the end of a chain
whose mass per unit length is 1 kg/m. The bucket is at the bottom
of a well 20 m deep, find the work done in hauling the bucket and
chain to the surface.

12. A railway truck is pulled a distance of 100 m along a straight
track, starting at a point A4, by a varying force F. The magnitude of
Fis (6 — x/20) N, where x m is the distance moved from A. If the
direction of Fisinclined at 30 degrees to the track, find the work done
by the force.

13. A light elastic thread of modulus 20 N and natural length 1 m,
hangs unstretched. A man pulls one end until its length is 1-5 m.
Find (a) the work done by the tension in the string (b) the work done
by the man.

If he now extends the string by a further 0-5 m how much extra
work does he do?

14. An elastic string of natural length 50 cm has a modulus of
elasticity of 600 m N. Find the work done in stretching the string
from an initial stretched length of 60 cm to 100 cm.

12.3. POWER

Definition—The power (or activity) of a force is the rate at which it
does work, i.e.
dw

ower H = —.
p dt

SI unit of power ... J/S = watt (W)
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In the particular case when work is done at a constant rate, H
= Wi/t

Example. An engine working a conveyor belt raises gravel, through a
height of 30 m, at the rate of 400 kg/min. Neglecting work done in
overcoming frictional and other resistances, calculate the rate at
which the engine is working.

In 1 min the work done in raising 400 kg through 30 m is 400g .
301.

Now
H = Wt
400¢g . 30
H=—"——7"7""_
60
= 200 x 9-8.

Power of the engine = 1960 W

12.4. POWER AND VELOCITY

Consider a body working instantaneously with power H and exerting
a force F. Then by the above definition,

dw
H=-—"
dr
= lim ow
5:140 ot
lim F.or
=l
5t—0 Of
H=F.v

Thus at any instant the power of an engine can be measured by the
scalar product of the force it exerts and the velocity with which the
force moves. In the particular case when force and velocity are in the
same direction H = Fo.

We shall first consider examples in which the working body moves
at constant velocity, so that the acceleration is zero and the resultant
force on it is zero.
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Example 1. An engine draws a train, whose total mass is 300 tonne,
along a straight horizontal track against resistances of 150 N/t. If its
maximum speed is 15 m/s, find the maximum power output of the
engine.

If the resistances remain constant, find the maximum speed of the
train up an incline of 1 in 70.

150x 300N

300000 kg

(a) (b)
Figure 12.7

At maximum speed the train has zero acceleration. Hence, on the
horizontal (refer to Figure 12.7a),

F, — 150 x 300 = 0
F, = 150 x 300N,

F, being the tractive force exerted by the engine.
Now

H=F.v
= Fv (since force and velocity are in the same direction).
Power of the engine = (150 x 300). 15
= 675000 W.

Again when travelling at maximum speed (v say) up the incline
the train has zero acceleration. Hence, referring to Figure 12.7b,

F, — 150 x 300 — 300000g sina = 0
F, = 300(150 + 9 800/70)
= 300 x 290 N.

Since H = Fv and maximum power is being used, 675 000 = 300
x 290 v.

v =775 m/s.
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The maximum power output of the engine is 675 kW and it can
pull the train up the incline at 7-76 m/s.

Example 2. A cyclist and his machine together weigh 84 kg. Without
pedalling he travels at 35km/h down a straight road inclined at
sin~ ! (i) to the horizontal. Assuming that the resistance to motion is
proportional to the speed, what is his power output when travelling at a
uniform speed of 27 km/h along a straight horizontal road?

1
27km/h= 1% m/s

Ria %N!F
w

(b)

Figure 12.8

When the cyclist is travelling down the slope there is no power
output.and the speed is constant, therefore, the magnitude of the
resistance R to motion down the plane is equal to the component of
his weight. (Refer to Figure 128.)

R, = 84gsin 6
= 84g.{;
=TgN.

The resistance to motion is proportional to the spee& therefore,
because

R =7gN at35km/h

R= 7g.§—z_N at 27 km/h

His speed along the horizontal being uniform the magnitude F of
the force he exerts is equal to the magnitude of the resistance R,.

27g
F=-—7"N
5
But H = Fv
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e 15
S 2
= 3969 W.
The cyclist’s power when travelling at 27 km/h is 397 W.
Exercises IEb

1. A small steamer is travelling at 7-5 m/s. If the effective power
output of her engines is 1 500 kW, what is the resistance to motion?

2. A motor car whose weight is 1 500 kg is travelling at 10 m/s.up
an incline of sin ™! (4) to the horizontal. If air and road resistances
are neglected, what is the power output of the engine?

3. A locomotive pulls a train of mass 200 tonne up an incline of
sin~ ' (139) to the horizontal at a uniform speed of 10m/s. If the air and
track resistances are 35 N/t, find the power output of the locomotive.

4. A cable car weighs 650 kg and carries a load of 850 kg. At one
part of its journey the car is travelling upwards at a constant speed of
7-2km/h, its direction of motion being inclined at an angle of
sin”!(§) to the horizontal. The air and track resistances total
50g N. Find the power output of the engine hauling the car.

5. A train of mass M tonne is travelling at a steady speed of
vkm/h on the level ground. If the air and track resistances total
RN/t, find the power output of the engine. The train now travels up
an incline of sin™! (135) the air and track resistances remaining the
same. If Vkm/h is its maximum speed on the level ground and
U km/h its maximum speed up the incline, show that

Vv 10g
i 1+ R

6. The engine of a car works at a constant rate. The maximum
speed of the car on the level is v; and the maximum speed up a given
slope is v,. Find the maximum speed of the car down the same
incline, assuming that the air and track resistances remain the same
in all three cases.

7. Alocomotive pulls a train of mass 30 000 kg up a rack railway ;
at its steepest part the track is inclined at sin = ! (&%;). If, at this point,
the train is travelling at 1 m/s and the air and track resistances total
7840 N, find the power output of the engine in Force de Cheval. [1
Force de Cheval = 735 W.]

8. The combined mass of a man and his bicycle is 90kg. He
cycles up a hill at 5m/s. If his power output is 250 W and the
resistances to motion, other than gravity, are 5 N, find the slope of
the hill.
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9. A cyclist and his machine together weigh 100kg. Without
pedalling he goes at a constant speed of 27 km/h down a road
inclined at sin ~ ! (3%;) to the horizontal. At what rate must he work in
order to go at the same constant speed (a) on the level (b) up an
incline of sin ™! (g), the resistances to motion, other than gravity,
remaining constant.

In the following examples the resultant force is not necessarily
zero and the mass can accelerate (or decelerate).

Example 3. A car of mass 1 500 kg is capable of working at a maximum
rate of 20kW. It is being driven up a hill, inclined at sin ™! (f) to the
horizontal, at 8 m/s. If the resistances to motion, other than gravity,
are 150 N, find the greatest acceleration it can have at that speed.

1500g N
Figure 12.9

The maximum power of the car = 20000 W. But if F is the force
exerted by the engine,

H=Fv
20000 = F x 8
F = 2500 N.

Applying P = mf up the plane (refer to Figure 12.9),
2500 — 150 — 1 500g sina = 15001

1500 x 9-8
2350 — 1309 X 98 _ 60/
2
1125 = 1 500f
f = 0:75 m/s>.

When working at maximum power and travelling at 8 m/s up the
slope, its acceleration is 0-75 m/s.

210




POWER AND VELOCITY

Example 4. A train of mass 300 tonne, begins to ascend an incline of
1 in 490 moving at 5m/s and working at 450 kW. If it continues to
work at this rate and the resistances to motion are 80 N/t, find the
maximum speed it can reach. Find also the time taken to reach two-
thirds of this maximum speed.

Let V be the maximum speed of the train. At speed v (< V) the
resultant force P on the train is :

450 000 1
P = —80x300—300000ng0
450 000 300000 x 9-8
- — 24000 -~ —
=450000~30000'
Now P=mf
(450000—30000) = 3000001
115 ‘ .
=—|—=_ 1] ...
f mh ) (i)

The maximum speed is reached when f = 0. Thereforg from (i),
V = 15m/s. Atspeeds less than V, equation (i} can be written

ﬁz%é_q
dt 10l v
Jissi=wla
_fb_ﬁgﬂ®=%fm
v+1510ge(15—v)=C—{—6

whent =0,v = 5,
C =5+ 15log. 10

15—v t
U+1510ge T =5‘—T0
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when v = 10
t

°7 10
10[151og. 2 — 5]
= 50{31og.2 — 1]
= 53:97s.

The maximum speed is 15 m/s and the time taken to reach two-thirds
of this speed (from 5 m/s) is 54-0s.

I

2
t

1
10 + 151og, (~)

I

Exercises 12¢

1. A car, of mass 1 200 kg, is travelling at 15 m/s on level ground.
The maximum rate of working of the car is 15 kW. If the resistance
to motion is 100 N, find the greatest possible acceleration it can have
at this speed.

2. A car of mass 1400 kg is travelling at 20 m/s on level ground.
Its greatest possible acceleration at this speed is found to be 0-5 m/s2,
If the resistance to motion is 100N, find the maximum rate of
working of the car.

3. A train whose total mass is 240 tonne is travelling up an incline
of sin ! (+3), the air and track resistances being 12 kN. The train is
travelling at 16 m/s and the maximum rate of working of its engine is
640 kW. What is the maximum possible acceleration it can have at
this speed?

4. A train whose total mass is M is travelling on level ground
against resistances which total kv where v is its speed. The engine
can either work at a maximum rate H, or exert a maximum tractive
force P. Show that the maximum speeds attainable in each case are

equal to ./ H/k or to P/k.

5. A cyclist whose maximum rate of working is 75 W cycles down
a slope of inclination sin™ ! (g5) at a constant, maximum, speed of
45 km/h. If the total mass of the rider and his machine is 80 kg, find
the resistances opposing motion.

6. The cyclist in Question 5 finds that the resistances opposing
motion, other than gravity, vary directly as his speed, and at
22-5km/h they total 7N. Find his maximum acceleration when
travelling on a level road at 11-25 km/h. '

7. The combined mass of a cyclist and his machine is 90 kg. While
working at a steady rate of 150 W, he commences to accelerate up a
hill. If the resistance to motion, other than gravity, is 10 N and, at
the moment his speed is 3 m/s his acceleration is 75 m/s?, find the
inclination of the hill.
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8. A train of total mass 160 tonne is ascending a hill inclined at
sin”' (z45). With the engine working at half its maximum rate of
420 kW the train moves steadily at 63 km/h. Find the resistances to
motion in N/t. If the engine is now made to work at maximum rate,
find the immediate acceleration up the hill.

9. A hovercraft of mass 500 tonne is moving across smooth water
against negligible resistances. If the power being used to propel it
forward is constant at 1000 kW, find the time taken to increase its
speed from 30 m/s to 36 m/s.

12.5. WORK AND KINETIC ENERGY

Referring back to Section 12.1, we have that, for a particle subject to a
resultant force P, the net work done in a displacement r is given by,

B
net work done = f P.dr
A

Also, from Section 6.3, P will give rise to an acceleration f, where

P = mf,

B
net work done = f mf. dr

A

B do
= J'A mad"

J‘B do drdt
= m—.—
4 dt dt

(if m remains constant)

net work done—mJ~ .odt (@)

dv.v) dv dv dv

Now ar —E.v+v.a—20.dt.
v. v—2fv Adt Lo (i)

from equations (i) and (ii),

net work done = 3mv?) 5  (v.v = v?)
B
J P.dr = imvi — tmv? ... (iii)
A
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The quantity $mv? is defined as the kinetic energy (K.E.) of the particle
(its units being the same as those of work done, i.e. joules).

Hence equation (iii) states that the increase of kinetic energy of
a particle during a displacement is equal to the net work done by
the resultant force acting on the particle or more shortly:

Final K.E. — initial K.E. = net work done.

This result is often called the Principle of Work and can be con-
veniently used to solve some problems which involve speed and
distance (but not time and acceleration).

Example 1. A smooth circular wire is fixed with its plane vertical
and has a small bead threaded on it. If the bead is projected from the
lowest point of the wire at 4 m/s, find the vertical height through which
it has risen when its speed is 2 m/s.

Figure 12.10

Let the particle have mass m kilogrammes. Then the forces
acting on it are shown in Figure 12.10. Since N is always at right
angles to the motion of the particle it does no work. By the principle
of work,

Final K.E. — initial K.E. = work done

im2? —imd4? = —mgh + 0
22 — 4% = 2 x 98h
h = 1663 m.

The particle has risen through a height of 1-63 m when its speed
is 2 m/s.

The principle of work can be extended to several particles con-
sidered together. Thus, for a system of particles, the total increase in
kinetic energy of the system is equal to the total work done on
the system.
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Example 2. A particle of mass m, lies at rest on a rough horizontal
table. The coefficient of friction between the particle and the table is I
It is connected by a light inelastic string, passing over a smooth pulley,
to a freely hanging mass m,. If the system is released from rest, find
the speed u of each mass after m, has moved a distance d along the
table, assuming m, does not reach the floor.

R
MR é’

T

m
L myg T
m2 g
Figure 12.11

Since m; moves a distance d and the string is inextensible, m, falls
a distance d (refer to Figure 12.1]).

work done by gravity = m,gd.

The reaction of the table is R = m, g
the frictional force uR = um, g

work done against frictional force = um; gd.

The total work done by the tensions = —Td + Td = 0. By the
principle of work,

final K.E. — initial K.E. = work done,

and because the system starts from rest,
(3myu? + myu?) — 0 = mygd — pmygd
%UZ(WH + my) = (my — um,)gd
u? = 2gd(m; — pm,)/(m; + m;).
Example 3. A particle of mass m, is attached to the mid-point of a
light elastic string AB, of natural length 15a and modulus 105mg/16.
The ends A and B of the string are attached to two points on the same
horizontal level, distance 15a apart. The particle is released from

rest on the same horizontal level as AB with the string just taut.
Find its speed after it has fallen a distance 4a to a point Q.
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Since the string is just taut, the particle P must start from a point
midway between A4 and B. Referring to Figure 12.12, we have

BQ? = BP? + PQ?
= (15a/2)* + (4a)*
— 2894%/4

BQ = 17a/2.

Particle mg
Figure 12.12

The work done by gravity is mgh = mg4a. The work done by the
tension in the string = —2 x +4e?/I (refer to Section 12.2).
' , L, 105 (1702 - 15a/2)?
2516 1542
105m a/l_S
16 %) 2

= —Tmga/8.

By the principle of work,
final K.E. — initial K.E. = net work done
imv* — 0 = 4mga — Tmga/8

Exercises 12d

1. A particle is thrown vertically downwards with speed u. Use
the principle of work to find a formula for its speed after falling
through a height h.

Would it make any difference to the formula if the particle had
been projected (a) vertically upwards (b) at an inclination 6 to
the vertical?
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2. A particle is projected directly up a rough plane inclined at
an angle sin~' 2 to the horizontal with a speed of 7 m/s. Find the
distance it travels before coming to rest, if the coefficient of friction
between particle and plane is 4.

3. A light elastic string, of modulus 3g N and natural length 1 m,
has one end fixed at O and to the other is attached a particle P of
mass 3kg. P is held at O and then released. If P first comes to
instantaneous rest at A, what is the net change in kinetic energy
between O and A? Find the distance O A.

4. A particle is free to move in a smooth circular tube which is
fixed with its plane vertical. The radius of the tube is a and the
particle is projected from the lowest point with speed v. If the
particle just performs complete revolutions, find v in terms of g and a.

5. A particle of mass m is attached to one end of a light elastic
string of modulus 2mg and natural length I. The other end of the
string is attached to a fixed point 4 and the string hangs vertically
with the particle held a distance | below A. If the particle is allowed
to fall, find the distance travelled before it comes to rest.

6. A cricket ball is thrown in an upward direction with a speed
of 21 m/s. At what speed is it travelling when it reaches a height
of 10 m?

7. A curling stone is projected across the level surface of a frozen
pond at 7m/s. If the coefficient of friction is 0-05, how far will it
slide?

8. Two particles of masses 80 g and 60 g are connected by a light
inextensible string passing over a smooth pulley. They are released
from rest with the string taut. Find their speeds after the heavier
particle has fallen a distance of 20 cm.

9. If, in Question 8, the heavier particle had been travelling
upwards at 70 cm/s, how far would it travel before coming to rest?

10. A wedge has two smooth faces inclined in opposite directions
at angles a, § to the horizontal. Particles 4 and B of masses m, and
m;, rest on the faces and are joined by a light inextensible string
passing over a smooth pulley at the vertex of the wedge. If m, rests
on the face inclined at angle « and the system is released from rest,
find the speed of the particles after they have each travelled a
distance d.

11. In Question 10, if the faces are rough and u is the coefficient
of friction in each case, what would be the speed?

12. Two particles, each of mass 30 g, rest on a smooth horizontal
table. They are connected by a light elastic string of modulus
0-06g mN and natural length 24 cm. The particles are held apart by
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two forces of 0:09g mN and then released. Find their speeds when
the distance apart is reduced to 36 cm.

13. A particle is moving with speed V directly up a rough plane
inclined at an angle « to the horizontal. If 4 is the angle of friction,
show that it will travel a distance V2 cos 4/2gsin(a + 4) before
coming to rest.

14. A light inextensible string has one of its ends attached to a
fixed point. Its other end is threaded around a smooth pulley A4
of mass m, , over a fixed smooth pulley B and attached to a mass m,,
which hangs freely. A mass M is attached to 4 (M + m;, > m;)and
the system released from rest. Find the speed of M after it has moved
a distance a, assuming all the portions of the string are vertical and
m, does not reach the fixed pulley B.

15. A light elastic string has a natural length of 20cm and
modulus 0-4g mN. The string is attached to two points A and B
30 cm apart on a smooth table and a particle of mass 10 g is attached
to its mid-point. The particle is displaced a distance 4 cm from its
equilibrium position to a point in the line AB, and released. Find
its speed v on passing through its equilibrium position. Could the
principle of work be used to find v, if the displacement had been
greater than 5cm?

12.6. CONSERVATIVE FORCES AND POTENTIAL ENERGY

We have seen in Section 12.1, that when a force F has its point of
application displaced from A to B

B
work done = f F.dr.
A

For some forces the work done depends on the path taken. For a
block of wood resting on a rough horizontal table the work done
against friction in moving the block from 4 to B depends on the
length of the path taken. Sometimes the work done by F depends
only on the positions of 4 and Band isindependent of the path taken,
such forces are called Conservative Forces.

For such a force it follows that the work done in moving from
Ato Bisequal and opposite to the work done in moving from B to A.
Therefore, the work done by a conservative force, when its point of
application follows any closed path, is zero. The reverse is also true
if the work done by a force, when its point of application follows
any closed path is zero, the force is a conservative force.

Any constant force is conservative because, referring to Section
12.1, the work done by-a constant force F is given by F. (X dr) and
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for a closed circuit T dr = 0, therefore the work done is Zero,
therefore F is a conservative force. Thus the weight of a particle
(where the work done depends only on the change of vertical height)
1s conservative.

Also it can be shown that the tension in a spring or elastic thread
is a conservative force.

Frictional forces are not, however, conservative since, as indicated
earlier, the work done depends on the path taken.

Example 1. Show that the force F is conservative where F — x’K,
K is a constant vector, and x is distance measured parallel to unit
vector i.

Let K = ai + bj + ck, from Section 12.2 the work done by a
variable force [note F varies in magnitude but not in direction] is

B B
J. F.drzf x*(ai + bj + ck).dr.

A A
Now r=xi+ yj+ zk Soodr=ddx +jdy + kdz
Work done from 4 to B

B
=f xXai + bj + ck). (dxi + dyj + dz k)

A

B
=f x*(adx + bdy + cdz)

B B B
=af xzdx-f-bf dy+cfdz
A A A

— ol 5[+ oo+ e

3

X3 — x
a[%:l + blyg — yal + clzp — z,4]

and the value of this depends only on the initial and final positions of
A and B and is therefore independent of the path taken. It follows
that F is conservative.

We can now define Potential Energy (P.E.) at a point A for any
conservative force F as minus the work done by the force [i.e., the
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work done against the force] in moving from an arbitrary* base
point P to the point A

A P
Potential energy at A = — f F.dr = f F.dr
P A
Thus at a height h, mgh is the gravitational P.E. of a particle of mass
m; and Ax2/2] may be regarded as the P.E. of a stretched string.
We also have that:
B

work done = j F.dr

A

P B
=f F.dr+f F.dr
A P

P P
=J F.dr —J F.dr [bytheusual properties

4 B of definite integrals]
= P.E. atA — P.E. at B. ()
From Section 12.5,
work done = ymv} — smvi. ... (i)

Therefore from equations (i) and (ii)
work done by a conservative force
= P.E.at A — P.E. at B = imv} — $mv}
P.E at 4 + dm? = P.E.at B + imuj

or the sum of K.E. and P.E. is constant for a conservative force.
This is the Principle of Conservation of Energy for a particle in
motion under conservative forces. It may be used in place of the
Principle of Work in solving problems in which there are no non-
conservative forces.

Example 2. A mass m slides a distance d from A to B down a plane
inclined at an angle a to the horizontal. If it was initially at rest at A,
find its speed at B. Consider two cases (a), when the plane is smooth
(b), when the plane is rough, coefficient of friction p.

Case (a)
Since the plane is smooth, the only force acting is gravity—a
conservative force.

* In practice, we choose the most convenient point as the base point.
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K.E. + P.E.at4 = K.E. + P.E. at B.
Takmg B as the base point for the P.E,
0+ mgdsino = tmv? + 0

R = /(2gd sin )
Case (b)

A non-conservative frictional force uR, where R = mg cos o is
now acting. Therefore we use the Principle of Work. (Work is done
by gravity and against friction.)

Net work done = change in K.E.
mgd sina — uR = mv? — 0

mgd sin o — pumg cos « = imv>

v = \/(Egd sin o — 24 cos o).

EXERCISES 12*

1. A train is travelling on a straight level track against resistances
totalling SkN. The engine exerts a tractive force of 10kN until
it is working at its maximum power output of 210 kW. What is its
speed at this instant? If the engine continues to work at 210 kW,
what is the maximum speed it can attain?

2. A particle of mass 100 kg moving freely in a straight line is
acted on by a force which changes its speed from 10 m/s to 24 m/s.
Find the work done by the force on the particle.

The particle is now acted on by another force which brings it to
rest, find the work done by this second force.

3. A locomotive has a maximum power output of 200 Force de
Cheval. It is pullmg a train of mass 20000 kg up a rack railway
inclined at sin~!(}). If the air and track resistances total 1kN,
find the maximum steady speed which can be maintained (1 Force de
Cheval = 735 W).

4 A partlcle of mass 56 g lies on a rough plane inclined at

“1(%). Itis attached by a light inextensible string passing over
a smooth puiley to a freely hanging weight of 14 g. The masses are
initially moving with a speed of 5my/s. If the speed decreases to
2 m/s, find the net work done. Thefrictional force Fremains constant
and the distance travelled during the decrease of speed is 50 m.
Find the magnitude of F (neglect air resistance).

* Exercises marked thus, ¥, have been metricized, see Preface.
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5. The combined mass of a cyclist and his bicycle is 100kg.
When he ascends a slope of inclination sin ™' (), his constant speed
is 3my/s. If his rate of working is 330 W, find the resistance to
motion other than gravity. If he continues to work at the same rate,
find his initial acceleration when the road becomes level.

6. A sledge of mass 9 kg is dragged at constant speed a distance
of 1 m up an icy slope of inclination 30 degrees to the horizontal by
a rope. The coefficient of friction is 5. Find the work done by
(a) the force exerted by the rope (b) the friction (c) gravity.

7. An engine of mass 120¢ can maintain a constant speed of
17 m/s along a straight horizontal track when it is working at
170kW. At what power would it have to work when climbing an
incline of sin~ ! (:3) at the same speed, the frictional resistances
remaining the same?

8. A particle of mass m lies on a rough plane which is inclined
at an angle « to the horizontal. It is attached to a fixed point on the
plane by a light elastic string of modulus 3mg/2 and natural length
Initially, the particle is below the point of suspension, with the
string just taut and in the line of greatest slope of the plane. It
is released from rest, show that it will travel a distance

4l sin (o — A)/3cos A

before coming to rest again where 4 is the angle of friction.

9. The resistance to a train of mass 240 tonne travelling at a
steady speed of v m/s on alevel track is(a + bv) N/t. Whentravelling
at a steady speed of 20 m/s the power output of the engine is 160 kW
and at a steady speed of 10 m/s it is 60 kW, find a and b.

10. A motor car, of weight W kN, can travel along a straight level
road at a uniform speed of v m/s and can climb a hill of inclination «
to the horizontal at 9v/15m/s. Assuming that the resistances to
motion other than gravity are R N, and the power output of the car
H kW ineach case,provethat(a) 3R = S00W sin a(b)6H = Wovsin a.

11. A number n of uniform wooden planks, each of weight W,
thickness t and width g, lie in a pile of height nt on horizontal ground.
The planks are taken from the pile and placed one on top of another
to form a vertical wall of height na. Find the work done against
gravity. (J.M.B., part)

12. Explain the terms work and power.

Find, to the nearest whole number, the power in kilowatts
required to raise 3 t of water per minute through 30 m vertically
and deliver it through a horizontal pipe of which 1 m contains 10 kg
of water. (London)t

13. When a cyclist is travelling at a speed v, the resistances to
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motion are k(v? — 24v + 180) (k a positive constant). Sketch a
graph of his power output H against his speed v for values of v
from 0 to 20. Show that the graph has a local maximum at v = 6.
If H, is his power output at v = 6, find for what value of v his power
output is again H,.

14. A car of mass 1600kg is travelling on a level road. The
resistance to motion is kv N, where v is its speed in m/s. The engine
works at a constant rate of 16 kW and the car’s maximum speed is
20 m/s. Find the distance in which a speed of 10 m/s can be reached
from rest.

15. An electric locomotive is travelling on a straight level track
against negligible resistances. The speed of the locomotive increases
from 9 m/s to 18 m/s while it travels 600 m. Find the time taken if
the locomotive was (a) exerting a constant pull (b) working at
constant power.

16. A cyclist is working at a constant rate of 120 W as he rides
along a level road at vm/s. The total mass of the rider and his
machine is 96 kg and the resistances to motion are 3v/2 N. Show
that his acceleration is (80 — v?)/64v m/s?, and find the time taken
for his speed to increase from 4 m/s to 6 m/s.

17. A particle starts from rest and moves in a straight line under
the action of a force of magnitude k(10t — t?), where t seconds is
the time since starting. Find an expression in terms of t for the
power output by the force. Hence, show that this power is a

maximum, when t = 10 — \/E

18. A uniform chain of length 3 m weighs 10 kg, it is flexible with
very small links. Two metres of the chain rests on a rough horizontal
table top with the other 1 m hanging vertically. The chain is
perpendicular to the smooth edge of the table. If u is the coefficient
of friction and the chain is released from rest, show that, when the
length of the hanging portion is x, the work done by friction during
a small displacement dx is approximately —2ug(3 — x) dx joule,
and the work done by gravity is 22gx éx joule. If u = 0-3, find the
total work done on the body from the moment of release until the
last link leaves the table. Deduce the speed with which the last
link leaves the table.

19. A bead of mass m is threaded on a smooth circular wire
centre O, radius a, which is fixed in a vertical plane. A light elastic
string of natural length a and modulus 3mg connects the bead to
the lowest point 4 of the wire. The bead is projected from A with
a speed v, show that if v > /7ga, the bead will make complete
revolutions of the wire.
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20. The engine of a train is working at a constant rate. The
maximum speed of the train up a certain incline is v, and the
maximum speed down the same incline is v,. Prove that the
maximum speed on the level is 2v,0,/(v; + v,), assuming that the
resistance to the motion is constant and the same in all three cases.

(London, part)

21. A train of total mass 150 t is travelling on a horizontal track
at a steady speed of 72 km/h, the power developed by the engine
being 220 kW. Frictional resistance is 10kN. Calculate the air
resistance.

If the air resistance varies as the square of the speed and the engine
is drawing the same train up an incline of angle sin~! 37 to the
horizontal, at a steady speed of 36 km/h, calculate the power
developed. (It may be assumed that frictional resistance is un-
changed.) (London)f

22. The frictional resistance to the motion of a train is always
k times the total weight of the engine and coaches. An engine of
weight 2W works at constant horse-power throughout and attains
a maximum speed U when pulling 6 coaches each of weight W up
an incline. Down the same incline with only 4 coaches, the engine
can attain a maximum speed 2U. Find the maximum speed of the
engine when pulling 2 coaches on the level and also find its accelera-
tion in this case when it is travelling with a speed U on the level.

(London)

23. Anengine working at 300 kW pulls a train of mass 150 t along
a level track. Determine the frictional resistance in N/t if the
acceleration is 0-16 m/s* when the speed is 30 km/h.

If the power and the frictional resistances remain constant, find
the gradient which the train can ascend at a steady speed of 30 km/h.

(W.LE.C., part)t

24. A particle of unit mass moves in a straight line under the
action of a tractive force and a resistance kv?, where v is the speed
and k is constant.

{a) If the tractive force is P (constant) and the particle increases
its speed from u to 2u over a distance a, show that

P = ku2(4e2ka — 1)

e2ka -1

and find the corresponding time taken.
{(b) If the tractive force works at constant power and is equal to P
when v = u, find the distance over which the speed increases from

“uto2u. (London)
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25. An engine, of mass 50 t, moves from rest on a horizontal track
against constant resistances and for the first 30 s of its motion its
acceleration is 135(30 — t) m/s?, where t seconds is the time from
the start. If the force exerted by the engine is initially 50 kN, find
the magnitude of the resistances and an expression for the force
exerted by the engine while ¢ is less than 30.

Calculate the speed of the engine after 20 s and the power at which
it is then working, (W.JE.C)t

26. A train of mass 200 tonne ascends a hill of inclination « to the
horizontal, where sin o = t§y. The frictional resistance is 75 N/t.
If the locomotive works at a rate of 220 kW, what is the acceleratlon
in m/s? when the speed is 18 km/h?

[Take g as 9-8 m/s2.]

Assuming that the locomotive continues to work at the same rate
and that the resistance to motion is unchanged, find the maximum
speed which the train is capable of attaining whilst ascending the hill.

(London, part)f

27. Acar of mass M moves on a level road against a resisting force
which is proportional to the speed. The tractive force works at a
constant rate H. If the maximum speed attainable under these
conditions is V, prove that a speed u (< V) can be reached from rest
after moving a distance x where

Hx_11 V+u u
[Vl | 7 B 7

Find also the time required to attain a speed 1V from rest.
(London)
28. A train of mass M moves on a straight horizontal track. At
speeds less than V the resultant force on the train is constant and
equal to P; at speeds not less than V the rate of working of the force
is constant and equal to PV. Show that a speed v (> V) is attained
from rest in the time

M(V? + v?)
2PV

and find the corresponding distance travelled. (J.M.B)

29. A train of total weight W kilonewtons is drawn on the level
against a resistance Rv? kilonewtons, where v is the speed in m/s.
The greatest pull which the engine can exert is P kilonewtons and
the greatest power which it can develop is H kilowatts. The train
starts from rest and the engine exerts its greatest pull until the
greatest power is developed. Show that, at this instant, the speed
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of the train is V' m/s and that it has been acquired in a distance s
metres where

H w P
=— ={z=|1 ——]
14 P and s (ZgR) Oge(P—RVZ)

What is the greatest steady speed at which the train can travel on
the level? (W.JE.C)t

30. A light elastic string of modulus 6mg and unstretched length /,
is extended by an amount x. Derive an expression for the energy
stored in the string. One end of the string is tied to the highest point
of a smooth circular wire, radius I, which is fixed in a vertical plane.
The other end is attached to a small ring of mass m, which is free
to move along the wire. If initially, the ring is gently displaced from
rest at the lowest point of the wire, find the speed of the ring (a) at
the moment when the string becomes slack {b) when the ring reaches
its highest point on the wire. (J.M.B)

31. A train of weight 150 tonne is being pulled on a level track by
a tractive force of 40 kN against a resistance of (8 000 + 20v%) N,
where the speed is v m/s. Show that the distance in m taken to
accelerate from rest to 72 km/h is given by

25 pdo
0 —,
730 fo 107 — 2

At the moment when the train has reached this speed the power
is shut off and the brakes are applied. The resistance now totals
(18 000 + 200?) N. Show that the train travels from rest to rest in
a distance of 2 500 m approximately. (London)t

32. A train has a total mass of 275 tonne. It starts from rest and
travels up a straight incline of sin™' (3435). The engine works at a
constant rate of 450 kW and the resistance to motion other than
gravity is 80 N/t. Find the acceleration of the train when its speed
is vm/s. Hence, find the greatest possible speed of the train and
find the time during which the train acquires half of this speed
from rest.
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13
IMPULSE AND IMPACT

13.1. IMPULSE OF A CONSTANT FORCE

A constant force F, acting for the interval of time from ¢, to ¢,
is said to exert an impulse I where

I=Ft, —t,).

Impulse is a vector quantity and in the particular case of a constant
force has the direction of the force.

SI unit of impulse... N's
Example. A particle is acted on by a force of 2i — 2j + kN for
0-2 seconds, what is the impulse of the force?
I = Fi, —to)
=(2i — 2j + k)02
= 04i — 04 + 02k Ns.

13.2. IMPULSE OF A VARIABLE FORCE

When F is a variable force acting for an interval of time t to t,, we
divide the range t, — t, into n sub-intervals, dt,, dt,, ..., t,.
Let

F; be some value of F in the first sub-interval ¢,
F, be some value of F in the second sub-interval dt,

F, be some value F in the nth sub-interval ¢,

Then, as F,, F,,..., F,can each be taken as approximately constant
in their respective sub-intervals,

I1=F, 6t + F,6t, +--- + F,dt,

=Y For.

to
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In the limit, as the width of each sub-interval tends to zero, we have

1 11
I=1lim) Fét = J Fdt (refer to Section 3.6).
t

o0 o

(If F varies in magnitude but has a constant direction, / also has this
constant direction.)

Example. A particle is acted on by a force of t*i — 2tj newton where
t is the time in seconds. If the force acts for the interval of time from
t = 0tot = 2 seconds, what is the impulse of the force?

Ty
I=J Fdt
to

2
= f (t% — 2t de
0]

= 4% — 4
=% — 4jNs.
It follows immediately from the additive properties of integrals, that

[[sa-s] s

i.e. the impulse of a finite number of concurrent forces is equal to
the vector sum of the impulses of the separate forces.

13.3. IMPULSE AND MOMENTUM

In practical problems concerning blows and impacts, the forces are
very large and act for short times. In general, we cannot measure
the varying magnitudes. In such cases the impulse is measured by
the effect it produces. Thus,

t frd(
I = f Fdt = J (mo) dt (refer to Section 6.2)
fo o dt

(mv)y
= f d(mv)
(

mv)o
= (mv); — (mv)o.
If the mass m is constant,

I =mv, — mo,.
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The quantity mv is known as the Momentum (refer to Section 6.1) and
is a vector quantity with the same units as impulse.

Impulse = Change of Momentum

Example 1. A particle of mass 10 kg moving in a straight line, is acted
on by a force which changes its speed from 36 km/h to 54 km/h. Find
the impulse exerted.

36 km/h = 10 m/s, 54 km/h = 15m/s
Magnitude of impulse = mv, — mu,
=10 x 15 —10 x 10
= 50 Ns.

Example 2. A racing car of mass 1200 kg travelling on a horizontal
track at 144 km/h, strikes a vertical crash barrier at an angle of
30 degrees and rebounds with a speed of 90 km/h. If the direction of
the rebound makes an angle of 140 degrees with the original direction
of motion, find the impulse given to the car by the barrier.

- y
Mj

Figure 13.1

X -

If v, and v, are the initial and final velocities, vy = 144km/h =
40 m/s, and v, = 90 km/h = 25 m/s.

Taking axes Ox and Oy along and perpendicular to the crash
barrier (refer to Figure 13.1),

vo = 40[i cos 30° + jsin 30°)

= 40(i\/3/2 + j/2)
= 34-64i + 20j m/s

229



IMPULSE AND IMPACT
Also v; = 25(i cos 10° — jsin 10°)
= 25(0-9848i — 0-1736j)
= 24-62i — 434j m/s.
Now I =m(v, — vg).
Hence impulse received by car
= 1200[(24:62 — 34:64)i + (—4-34 — 20)j]
= 1200[—10.02i — 24-34j]
= —12024i — 29 210j N s.

Example 3. A cricket ball weighing 160 g is moving horizontally
directly towards a batsman. Its speed just before it hits the bat is
30 m/s. It leaves his bat at 40 m/s at 90 degrees to its original direc-
tion, and at an angle of 45 degrees with the horizontal. Find the
magnitude of the impulse imparted by the batsman to the ball.

Figure 13.2

Take the batsman as origin, axes Ox, Oy horizontally along the
pitch and perpendicular to it and Oz vertical. Let , j and k be unit
vectors parallel to Ox, Oy and Oz respectively (refer to Figure 13.2).

The initial velocity is —30i m/s, the final velocity is in a direction
given by j + k. The unit vector in this direction is (1/\/5)(i + k),
therefore, the final velocity is (40//2)(j + k) m/s.

Now I = mv, — mo,

Impulse received by ball, I = 0-16 x ﬂ(,- + k) + 016 x 30i
2

NG
1| = 0-16\/302 + (%)2 + (%)2

=016 x 50
=8 Ns.
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Exercises 13a

1. Aparticleis acted on by a force of 3i — 4j newton for 3s. What
is the magnitude of the impulse of the force?

2. A particle is acted on by a force of (3t> — 1)i + 5¢%j newton,
where t is the time in seconds. If the force acts for the interval of
timet = 2 to ¢ = 4s, what is the impulse?

3. A particle of mass 500 kg moving at 30 m/s, alters its speed to
45 m/s in the same direction when acted on by an impulse . Find
the magnitude of 1.

4. A particle of mass 25 kg originally moving in a straight line at
10 m/sis acted on by an impulse I. The magnitude of Zis 550 N s and
it acts directly against the motion of the particle. Find the new speed
of the particle.

5. A ball of mass 200 g travelling horizontally at 6 m/s strikes a
vertical wall at right angles and rebounds with a speed of 4 m/s. Find
the magnitude of the impulse given to the ball.

6. In a game of football, the ball, of mass 400 g travelling hori-
zontally at 20 m/s, hits the cross-bar of the goal posts at right angles.
The impulse imparted by the cross-bar to the ball is 12 N's, find the
speed with which the ball rebounds.

7. A football weighing 400g is passed along the ground to a
player, with a speed of 6 m/s. He returns it along the ground at a
speed of 8 m/s. If the direction of motion of the ball is altered by
90 degrees find the magnitude of the impulse given to the ball by the
player.

8. A racing car of mass 1t (tonne) is travelling on a horizontal
track at 198 km/h. It strikes a vertical crash barrier and rebounds at a
speed of 126 km/h at an angle of 120 degrees to its original direction
of motion. Find the magnitude and direction of the impulse trans-
mitted by the barrier to the car.

9. A particle weighing 1kg is travelling at 50 m/s, what is the
magnitude of theimpulse which will change its direction by 60 degrees
leaving its speed unchanged?

10. A football weighing 11b is moving horizontally towards a
player. Its speed just before it reaches him is 6 m/s. He passesitata
speed of 12 m/s at 60 degrees to its original direction and at an angle
of 60 degrees with the horizontal. Find the magnitude of the impulse
given by the player to the ball.

13.4. INELASTIC IMPACTS

Example 1. A pile of mass m, is being driven into the ground by a
piledriver of mass m,. At the moment of impact the piledriver is
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moving vertically downwards with speed u and the pile is stationary.
Immediately after the impact they both move with a common speed V.
Find V in terms of m,, m, and u, and the change in the total kinetic
energy of the system.

+ b
v
Before { vV  After

[ +
%
Figure 13.3

Referring to Figure 13.3, since the impulse is equal to the change of
momentum

for the piledriver —1I = my(V — u) . {3)
for the pile I=m((V-0) ... (1)

adding equations (i) and (ii)
0=m(V—u+mV ... (iii)
myu = (my + my)V
myu
B (m; + my)
From equation (iii) we see that when considering the two particles
together, provided there is no outside impulse, the change of

momentum is zero. This is an example of the principle of conserva-
tion of momentum (refer to Section 16-2), where ‘

momentum before impact = momentum after impact
myu = (m1 + mz)V
myu
YV =—2—— as before.
my + my
Kinetic energy before impact = 3mv* + 0

kinetic energy after impact = ¥m + M)V?
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‘. changeinK.E. = }mv? — ¥(m + M)V?

m?p?
(m+ M)
%mvz(l __n )

m+ M

= tmv? — {m + M) from equation (i)

+
M
Imv?
m+ M
, mMuv?
m+ M

Ii

This quantity is essentially positive. Thus there is a loss of kinetic
energy. Thisistrue in nearly all cases of impact as part of the energy
is converted into other forms such as heat, sound, light etc.

Example 2. A gun of mass M is free to move horizontally but not
vertically. The angle of elevation of its barrel is 0 and it fires a shell
of mass m. Show that initially the direction of motion of the shell is at
an angle tan~ 1 [(M + m) tan 6/M] to the horizontal.

v

u ! ) ¢
1’$ A u B

<

() Vector diagram
(a) Space diagram
Figure 13.4

Referring to Figure 13.4, the shell is reacted on by the gases and
there is an equal and opposite reaction on the gun. The gun is
free to move horizontally and the horizontal component of the
reaction imparts a backward velocity of magnitude u to the gun.
Thus, as the shell leaves the barrel of the gun it has a velocity v
relative to the barrel of the gun, and the backward velocity u of the
gun. The resultant ¥ of these two velocities is shown in Figure 13.4.

The gun is only free to move horizontally and the vertical com-
ponent of the reaction due to the explosion is equal to the reaction of
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the ground. The horizontal momentum of the gun is equal to the
horizontal momentum of the shell.

Mu = mVcos ¢ L)
From the sine rule applied to the vector diagram in Figure 13.4(b),

sin / ACB _ sin ¢
u Ty

sin($ — 6) _sinf

i.e. .
u V

... (i)

From equations (i) and (ii),
u _mcos¢ sin(p —0)
Vv M sin ¢
mcos¢sinf = Msin ¢ cos§ — M cos ¢ sin 8
M sin ¢ cos 6 = (m + M) cos ¢ sin
Mtan¢ = (m + M)tan 6

6 = tan~" I:(m + MA)/Itan 0]'

Exercises 13b

1. A truck, moving at 3 m/s, bumps into and is automatically
coupled to another truck of half its mass, which is initially at rest.
What is their common speed after impact?

2. A pile-driver, of mass 2 tonne, falls through a height of 2:5 m
onto a pile of mass 0-5t. What is the momentum of the pile-driver
Jjust before the impact? Immediately after the impact the driver and
pile move together. Find their common speed.

3. Arocket, of mass M and velocity V, is free to move in space. It
emits a blast of gas of mass m with a velocity, relative to the rocket, of
v. Show that its new velocity is V — mv/(M — m).

4. Abody, of mass 50 g, is moving with aspeed of 7 m/s. It meetsa
body of mass 120 g moving in the exactly opposite direction with a
speed of 10 m/s. If they coalesce into one body, find its new speed
and the loss of K.E. during the impact.

5. A pile-driver, of mass 4 tonne, falls through a height of 2-5m
onto a pile of mass 1t. The pile-driver does not rebound after
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impact. Ifthe pile is driven 20 cm into the ground, find the resistance
of the ground (assumed uniform).

6. A gun mass M can move on a horizontal plane. It fires hori-
zontally a shell of mass m. If # is the velocity of the shell relative to
the gun, find the velocities of the gun and the shell relative to the
plane.

7. A block of wood of mass M is suspended by a light inextensible
string. A bullet of mass m is fired horizontally into the wood with a
speed u. The wood and the embedded bullet swing until the block
of wood is at a height h above its original position. Show that
mu = (M + m)./2gh.

8. Two particles of masses m; and m, and velocities u; and u,
respectively, collide and stick together. Show that the energy lost in
the collision can be expressed as

mym;

1
5 m("z —uy). (uy — uy).

13.5. IMPULSIVE TENSIONS IN STRINGS

If two particles are connected by an inextensible string, any relative
movement of the particles, which causes the string to tighten, will
produce an impulsive tension in the string. For a light string this
impulse acts in the direction of the string and has an equal and
opposite effect on both particles.

Example 1. A particle of mass M lying on the ground is connected, by
means of a light inextensible string passing over a smooth pulley to a
mass m. After the mass m has fallen through a height h, the string
tightens and the mass M begins to rise. Find the impulse applied to M
when the string tightens and the initial speed.

1
L v (before)

V(after)T I |V (aften)

T

Figure 13.5
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Referring to Figure 13.5. Immediately before the string tightens
the speed of m is given by

v =u?+2fs
ie. v? =0+ 2gh
v = ./2gh ()

If I is the impulse and V the common speed of the two particles
immediately after the string tightens, then, considering the two
masses separately,

mV —mv = —1
and MV —-0=1 oL (i)
Adding mV + MV — mp = 0.
_ muv
T (m+ M)
_ my/2gh
(m+ M)
To find I we substitute from equation (iii} in equation (ii) and

_ mM./2gh
T o (m+ M)

From equation (i)

... (iii)

Example 2. Two balls A and B of masses 200 g and 300 g respectively,
lie on a smooth horizontal table connected by a taut, light, inextensible
string. The mass B is given an impulse I, of magnitude 0-03 N's in a
direction inclined at 30 degrees to the string AB and away from A.
Find the velocities of A and B immediately after the blow.

[
u E !
PraE I' gl 1300

02 kg 0-3kg Y
Figure 13.6

Considering the system as a whole, the internal impulsive tensions
in the string (I') acting on A and B cancel. Therefore the total
momentum of the system is due to the impulse 1.
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Let B move initially with speeds u and v in the direction of AB and
perpendicular to it respectively (refer to Figure 13.6). AB is a taut
string, therefore, intially A has the speed u in the direction of AB.

In a direction of AB, Icos30° is equal to the total change in
momentum of 4 and B.

0:03 cos 30° = 0-3u + 02u
0-15./3 = 5u
u= 0‘03\/3 my/s.

In the direction perpendicular to AB,
0-03sin20°=03v 4+ 0
015 =3v
S v= 005m/s.
If ¥ is the initial velocity of B,

V= JGJS3 + 5
=2/13 cm/s,

and the direction of ¥ makes an angle tan™' (5/3\/3) with AB
produced.

The initial velocity of A is 3\/3 c¢m/s in the direction of AB.

Example 3. Three particles A, B and C, of masses 4, 6 and 8 kg,
respectively, lie at rest on a smooth horizontal table. They are con-
nected by taut light inextensible strings AB and BC and / ABC =
120 degrees. An impulse 1 is applied to C. If the magnitude of I is
88 N's and it acts in the direction BC, find the initial speeds of A, B
and C.

Figure 13.7
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Referring to Figure 13.7, let 1, and I, be the impulsive tensions in
the strings BC and A B respectively. Since Aisacted on only by 1,, its
initial speed u will be in the direction of AB. Since the string AB is
taut, B must have a speed u in the direction AB. Also, let B have a
speed v in a direction perpendicular to AB [this is necessary because
I, acts in a different direction to ,). Finally, since both Zand I, the
impulses acting on C, have the same direction BC, let C have an
initial speed V in the direction BC.

Since BC is taut, the speeds of B and C in the direction BC are
equal.

ucos 60° + vcos 30° = V
w2+ 0/32=V. . ()
Considering the motion of 4,
4u=1,. ... (i)
Considering the motion of B along and pgrpendicular to AB,
6u =1,c0s60° — I,.

6u=1/.72-1, ... (i)
6v = I, cos 30°
v = 1,./3/2. (i)
Considering the motion of C,
8V =88 — I,. v
Eliminating I, from equations (ii) and (iii)
6u=1,/2 — 4u
o I, = 20u. ....(a)
Substituting from equation (a) in equation (iv),
6v = 20u./3/2
v = iu. ....(b

3
Substituting from equation (b) in equation (i),
5 3
Ij + —- i U= V
2 \/3 2

V = 3u. (0
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Substituting for V and I, [equations (a) and (¢)] in equation (v),
8.3u =88 — 20u

44u = 88
R u=2
From (b) v = 10//3.
From (c) V=oe6.

speed of A 1s 2 m/s,
speed of B is \/uz + v? = \/4 + 190

= 4\/§ m/s

speed of C is 6 m/s.

Exercises 13c*

1. A particle, of mass M, is connected by means of a light in-
extensible string passing over a smooth pulley toamassm. (M > m).
The system is moving with speed v when the mass M hits the floor. If
M does not rebound from the floor, find the impulsive tension in the
string when it is jerked off the ground by the mass m.

2. Two particles 4 and B, each of mass Skg, lie on a smooth
horizontal table at a distance 5 cm apart. They are connected by a
light inextensible string of length 13cm. A is given an impulse
65 Ns in a direction perpendicular to 4B. Find the impulsive
tension in the string when it becomes taut and the initial velocity of
B.

3. Two balls 4 and B, of masses 50 kg and 75 kg respectively, lie at
rest on a smooth horizontal table, distance 5 m apart. They are
connected by a light inextensible string of length 10 m. Bis given an
impulse 7 of magnitude 300 N s in the direction AB. Find the speed
of A when it is first jerked into motion, and the impulsive tension in
the string at this moment. Would the initial speed of A be altered if
the string A B had been taut at the moment the impulse was applied?

4. Two equal particles A and B, each of mass 2 kg, lying close
together at the edge of a table, are joined by a light elastic string of
length 2-5 m. If Bis gently pushed over the edge of the table, find the
speed of the particles when A4 begins to move, and the impulsive
. tension in the string. [Assume that the height of the table is greater
than 2-5m.]

* Exercises marked thus, , have been metricized, see Preface.
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5. A particle 4 of mass M lies on a smooth horizontal table. It is
connected by a taut light inextensible string, passing over a smooth
pulley at the edge of the table, to another particle of mass m which is
hanging freely. An impulse / is applied to A4 in the direction of the
string but away from the edge of the table. Find the initial speed of
the two particles.

6. Two particles each of mass M are connected by a taut light
inextensible string passing over a smooth pulley. The particles are
hanging freely at rest. A third particle of mass 3M falls freely
through a height h, strikes one of the particles and coalesces with it.
Find the initial speed of the particles.

7. Three particles 4, B and C, each of mass 2 kg, lie at rest on a
smooth horizontal table. They are connected by two taut, light,
inextensible strings so that / ABC = 135 degrees. An impulse I, of
magnitude 70 N s in a direction parallel to AB, is given to C. Find
the initial speeds of 4, B and C and the impulsive tension in AB.

8. Three particles, each of mass m, lie in order in a straight line on
a smooth horizontal table. They are connected by two taut light
elastic strings AB and BC. C is given an impulse / in a direction of
45 degrees with the line ABC and away from A and B. Find the
impulsive tensions in the two strings.

9. A particle of mass m lies at rest on a smooth horizontal table.
It is connected by two taut inelastic strings to two other particles of
mass, 3m and 2m, respectively. The angle BAC is 26. An impulse is
given to A in a direction bisecting the angle BAC and away from B
and C. Find the angle at which the particle 4 begins to move.

10. A string 80 cm long connects two masses m kg and 2mkg
which rest on a smooth horizontal table. The mass m is near the
edge, and the mass 2m is 40 cm from m in a direction perpendicular
to the edge, the string between the two masses being slack. The
mass m is gently pushed over the edge of the table. Prove that the
velocity of the other mass when it is jerked into motion is 14/15 m/s,
and find the time that elapses after the jerk takes place until the
mass 2m reaches the edge of the table. (London)t

13.6. DIRECT IMPACT OF ELASTIC BODIES

In considering impacts of two or more elastic bodies we shall
assume that they are smooth and therefore, that the mutual reaction
acts only along the common normal at the point of impact. We say
that the two bodies impinge directly if the direction of motion of
each is along this common normal.
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In Example 1 of Section 13.4, it was pointed out that provided
there are no outside impulses the total momentum is unaltered and
this will apply in the following problems. The bodies are generally
taken as equal spheres.

u

1 U2
Before ——= — (uy >uy)
After R — -
7] 4]
Figure 13.8

Consider two bodies of masses m; and m, which impinge directly,
let u, , u, be their speeds before impact and v, , v, their speeds after
impact. Since the bodiesare supposed to be smoothand they impinge
directly, u, , u,, vy, v, are all in the direction of the common normal.
Since the total momentum is conserved, we have that

mu; + mouy, = mv, + myv, R (1)

This one equation is not sufficient to calculate v, and v, and we have
recourse to Newton’s experimental law. If the velocities both before
and after impact are taken relative to the same body, then, for two
bodies impinging directly, their relative velocity. after impact is
equal to a constant (e) times their relative velocity before impact and
in the opposite direction. e is known as the coefficient of restitution.
For the two bodies depicted in Figure 13.8

vy — vy, = —elu; — u,) R 11}

In the case of oblique impact, the result holds for the components of
the velocities in the direction of the common normal at impact. The
value of e has to be found by experiment and varies from 0 for
completely inelastic bodies to practically 1 for nearly perfectly
elastic bodies.

The two results (i) and (ii) enable us to find v, and v, but it is
extremely important to note that these formulae will only be true if
u;, Uy, vy, v, stand for speeds in the same direction.

Example 1. A sphere of mass 3 kg moving at 6 m/s, impinges directly
on another sphere of mass 5 kg, moving in the same direction at 3 m/s.
If e = %, find their speeds after impact.

241



IMPULSE AND IMPACT

6m/s 3m/s
Before —= — -
After
1 v
Figure 13.9

Let v, v, be their speeds after impact (refer to Figure 13.9).
By Newton’s Law v, — v, = —%(6 - 3)
: vy — U, = —2, @
Since the momentum is conserved,
momentum before = momentum after impact.
6 x3+3x5=3v, + 50,
Le. 33 = 3v; + Sv,. N 1]
Multiplying equation (i) by 5 and adding to equation (ii),
33 — 10 = (3v; + Sv;) + (5vy — Sv,)

23 = 8,

vy = 2gm/s.
Substituting for v, in equation (i),

v, = 4§ m/s.

Example 2. A sphere, of mass 100kg moving at 16 m/s, impinges
directly on another sphere of mass 500 kg, moving in the opposite
direction at 5m/s. If e = %, find their speeds after impact and the
magnitude of the impulse given to each sphere.

16 m/s -5 m/s
—— —_—
v v

1 2

Before

After

Figure 13.10
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Let v,, v, be their speeds after impact. Referring to Figure 13.10,
we note that the second sphere has a speed of — 5 m/s along the line
of centres.

By Newton’slaw v, — v, = —%[16 — (=5)],
or v, — v, = —14. (D)
Since the momentum is conserved,

100 x 16 + 500 x (—5) = 100v; + 500v,.

-9 = vy + 5v,. ... (1)
Subtracting equation (i) from equation (ii),
6v, =5
v, = 2m/s.

Substituting for v, in equation (i),
v, = — 13t m/s.
The magnitude of the impulse is equal to the change of momentum
of either of the balls.
: magnitude of the impulse = 5002 — (—5)]
= 29163 Ns.
The speed of the first sphere changes from + 16 m/s to — 13§ m/s, so
that it rebounds after impact. Similarly, the speed of the second

sphere changes from — 5 m/s to +2 m/s so that it also rebounds after
impact.

Example 3. A ball moving with speed u impinges directly on another
ball of the same mass. If the second ball was stationary before the
impact and e = %, find the loss of kinetic energy during impact.

u 0
— —
Y Y2

Figure 13.11

Before

After

Let m be the mass of each ball {refer to Figure 13.11).
By Newton’s law vy — v, = —3u —0),

or v, — v, = —tu N 1]
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The momentum is conserved.
mu + 0 = mv; + mo,
u=v;+ ;. ... (i)

Adding equations (i) and (ii),

20, = tu
v; = u ... (iii)
Substituting for v, in equation (ii),
vy = 3u. oo (iv)

Now the loss of K.E. is given by

Imu? + 0 — dmv? — I3

= dmu? — tmGu)? — m@Gu)?® by (iii) and (iv)

Exercises 13d

1. A ball, of mass 3kg moving at 8 m/s, impinges directly on
another ball whose mass is 5 kg. If the second ball is moving at 3 m/s
in the same direction and e = %, find their velocities after the impact.

2. A ball, of mass 4 kg moving at 5m/s, impinges directly on
another ball of mass 7 kg moving at 10 m/s in the opposite direction.
If e = %, find their velocities after the impact.

3. A sphere, of mass 600 g moving at 12 cm/s, impinges directly
on another sphere of mass 1800 g, which is stationary. Ife = 1, find
their velocities after impact and the fraction of the initial kinetic
energy lost during impact.

4. A railway wagon of mass 10tonne is moving at 1 m/s. It
collides with another wagon of mass 40 tonne moving at 0-2 m/s in
the same direction. The first wagon remains at rest after the impact.
Find the coefficient of restitution between the two wagons.

5. A sphere, of mass m moving with speed V, impinges directly on
an equal sphere moving with speed v in the same direction. Show
that the magnitude of the impulse on ecither of the spheres is
im(1 + e)(V — v), where e is the coefficient of restitution.

6. Three smooth equal spheres A4, B and C each of mass m lie, in
order, on a smooth horizontal table with their centres in a straight
line. Band C are initially at rest and A4 is moving with speed u along
the line of centres towards B. After the impact, B collides with C. Ife
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is the coefficient of restitution between each pair of the balls, find the
velocities of the three spheres after the second impact.

7. A railway wagon, of mass m moving with a speed u, impinges
directly on a similar wagon which is stationary. Show that the loss of
kinetic energy during the impact is imu?(1 — e2), where e is the
coefficient of restitution.

8. Three smooth spheres A4, B and C of equal radii and masses m,
2m, 4m respectively, lie at rest on a smooth horizontal table. Their
centres are in a straight line and Bis between A and C. A is projected
towards B with a speed u. After the impact, B continues along the
line of centres and strikes C. If e = 4, show that after the second
impact both A and B are at rest, and find the loss of kinetic energy
after the two impacts.

9. Two balls 4 and B of equal radii, and masses 4 kg and 5kg
respectively, lie on a smooth horizontal floor. 4 is given a velocity u
and impinges directly on B, which then hits a smooth vertical wall
normally. After rebounding from the wall, B hits 4 a second time.
If B is brought to rest after the second impact with 4, show that
2¢® — 3¢ — 3e + 2 = 0 where e is the coefficient of restitution
between the two balls and between B and the wall. Verify that
e = 1 is the only practical solution of the equation.

10. A sphere, of mass m, impinges directly on a stationary sphere
of mass 3m. If two-thirds of the original kinetic energy is lost, find
the coefficient of restitution between the two spheres.

13.7. OBLIQUE IMPACT OF ELASTIC BODIES

Consider two smooth bodies, masses m; and m,, which impinge
obliquely. Let their speeds be u, and u, in directions making
angles a and f respectively, with the common normal (refer to
Figure 13.12).

Before

After

u, sin o u, sin B

Figure 13.12
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Since the bodies are assumed to be smooth and the impulse has
nocomponent perpendicular to thecommon normal, thecomponents
of their velocities perpendicular to the common normal u, sin «,
u, sin f§ are unaltered.

The components of their velocities along the common normal
can be found in the same manner as for direct impact. Let v, v,
be the components along the common normal of the velocities after
impact. As we remarked at the beginning of Section 13.6, for oblique
impact Newton’s law holds for the component velocities along the
common normal

vy — v, = —eluy cos a — u, cos f). L 1)
Since the momentum is conserved
Mmyuy COS o + Myuy cOS B = mv; + myv,. L (i)

Equations (i) and (ii) enable us to find v, and v, and since the
components perpendicular to the common normal are known,
we can find the velocities of the two spheres after impact.

Example 1. Two smooth elastic spheres A and B of equal radii and
masses 80 kg and 72 kg respectively, lie at rest on a smooth horizontal
surface. A is projected towards B with a speed of 60 m/s and strikes B
obligquely at an angle of 30 degrees with the line of centres. If e = %,
find the velocities of the two spheres after impact.

Before

After

60 sin 30°m/s

Figure 13.13

Let AB be the line of centres. The components of the velocities
perpendicular to AB, 60 sin 30° and O are unaltered by the impact.
Along AB (refer to Figure 13.13). By Newton’s law

v, — by = —460 cos 30° — 0)

v, — vy = —15/3. i)
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Since the momentum is conserved,
80. 60 cos 30° + 0 = 80v;, + 72v,

2400,/3 = 800, + 72v,

or 300./3 = 10v; + 9v,. R 1]
Adding 9 x equation (i) to equation (ii)

190, = 165./3
= 165./3/19.

By substitution in (ii) v, = 450,/3/19.

v

[y

Hence the velocity of B after impact is 450f 3/19m/s in the
direction of 4B.

The velocity of A after impact has components 165f /19 m/s
along AB and 30 cm/s perpendicular to 4B.

o = \/— ( 65\[) = 33-6m/s

and the directton of v, makes an angle of

tan~! [—§O——:I = tan ! (—ﬁ—)
(165,/3/19) 11./3

with AB in the direction AB.

Example 2. A smooth sphere, of mass 10 kg moving horizontally with
a speed of 9 m/s, impinges on another smooth sphere of mass 8 kg
moving horizontally with a speed of 6 m/s. If their directions of
motion at impact are inclined at 45 and 60 degrees respectively to the
line of the common normal, e = %, and their radii are equal, find their
speeds after impact.

Before

After

9 sin 45°m/s 6 sin 60°m/s
Figure 13.14
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Let 4 and B be the centres of the two spheres. The components
9sin 45° and 6 sin 60° perpendicular to AB are unaltered by the
impact (refer to Figure 13.14). Along AB, by Newton’s experimental
law

v, — v, = —39 cos 45° — 6 cos 60°)
—39//2 = 3).
vy — vy = =32+ 2 oo )

By conservation of momentum, 10 x 9 cos 45° + 8 x 6cos 60° =
10v; + 8v,, where v,, v, are the components of their velocities
along 4B after impact.

45/2 + 24 = 100, + 8v,. ... (ii)
Adding 8 x equation (i) to equation (ii)

180, = 40 + 21,/2

40 + 21,/2
vy = ———18— .
4 + 75./2
Substituting in (1) vy = +_18\/; .

The speed of the 10 kg sphere is

! 18 V2

= 7-54 m/s.

The speed of the 8 kg sphere is

2
Jv2 + (6sin 60°)% = \/E%%) + (3./3)

= 575 m/s.

Example 3. Asmallsmooth sphere S is suspended by alight inextensible
string of length 2a from a fixed point P, whose distance from a smooth
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vertical wall is aﬁ. The sphere is projected horizontally towards the

wall with a speed of \/(37ga/5). Find the velocity with which it strikes
the wall. If the coefficient of restitution between the sphere and the
wall is §, find the loss of kinetic energy on impact.

P - VIg ————=Q

b N30° g

" BN v
; NN

e B i b \_S "

v

S :(379075_7

Figure 13.15

Let §' be the point at which the sphere strikes the wall and PQ the
perpendicular from P to the wall. By trigonometry the angles in
APQS’are 30°, 60°,90° (refer to Figure 13.15), and the length QS'isa.

Let v be the speed of the sphere at S’ and m its mass:

By the Principle of Conservation of Energy (refer to Section 12.6)

PE atS + KE atS=P.E at§ + K.E. at §
Taking PQ as the level of zero potential
—mgPS + im(37ga/5) = —mgQS' + imv?
30> = H37ga/5) — mg(PS — QS
= 3(37ga/5) — mg(2a — a)
v? = 37ga/5 — 2ga

v = 3./3ga/5.

The velocity on impact is of magnitude 3. /3ga/5 and is in a direction
perpendicular to PS’, that is, at an angle of 30 degrees to the upward
vertical.

In this case the sphere on impact is only free to move vertically
and hence we apply the principle of conservation of momentum
vertically. Ifv; and v, are the vertical and horizontal components of
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the velocity of the sphere after impact,

muv cos 8 = mv,

m3./3ga/5 cos 30°

muv,

vy = % ga/5.

Applying Newton’s law along the common normal, that is,
perpendicular to the wall

v, — 0= —Hvsin 30° — 0)
—43./3ga/54 -0
—3./3ga/s.

)

Uy

Loss of kinetic energy

= dmv? — dmv? — tmo3

1m9-3ga/5 — sm%tga/5 — 3mz3ga/5

N

Il
[N

mga.

Exercises 13e

1. Two smooth spheres 4, B, of equal radii and masses m and
2m kg respectively, rest on a smooth horizontal table. A4 is projected
towards B with a speed of 16 m/s and strikes B obliquely, so that on
impact the line of centres is inclined at an angle of 60 degrees with
the direction of motion of 4. If e = 4, find the speeds of 4 and B
after impact.

2. Two equal smooth spheres of mass m rest on a horizontal table.
A is projected towards B so that on impact the line of centres is
inclined at 45 degrees to the direction of motion of A. If e = %, find
the angle through which the direction of motion of A4 is turned
through by the impact.

3. A smooth sphere is moving on a smooth horizontal plane.
It strikes a fixed smooth vertical wall at an angle « to the wall and
rebounds in a direction making an angle § with the wall. Show that
tan f = etan a, where e is the coefficient of restitution.

4. A smooth sphere A is moving on a smooth horizontal table.
It strikes obliquely another smooth sphere of equal size and mass,
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which is stationary. After the impact, the directions of motion of
the two spheres make equal angles ¢ with the original direction of
movement of A. Prove that e = tan? ¢, where e is the coefficient
of restitution.

3. A smooth sphere of mass 200 g, moving horizontally with a
speed of 26 cm/s, impinges on another smooth sphere of equal radius
and mass 300 g. The second sphere is moving horizontally with
a speed of 20 cm/s. If the directions of motion at impact are inclined
attan” 'ty and tan™* } to the line of centres, and e = 4, find their
speeds after impact.

6. A small metal ball falls vertically and strikes a fixed smooth
planeinclined atan angle 0 (< 45°)to the horizontal. Ifthe coefficient
of restitution is % and the ball rebounds horizontally, find what
fraction of the kinetic energy is lost during the impact.

7. Two smooth spheres A and B of the same radii but of masses
2m and m respectively rest on a horizontal table. A is projected
towards B with a speed u and strikes B obliquely so that the line of
centres is inclined at an angle of 60 degrees with the direction of
motion of A. The coefficient of restitution is 4. Find the loss of
kinetic energy due to the impact.

8. Two smooth spheres 4 and B, each of mass 10kg and the
same radius, are moving towards one another on a smooth hori-
zontal table. They impinge on one another. At the moment of
impact their speeds are 6 m/s and 8 m/s respectively, and the direction
of motion of A4 is inclined at 30 degrees to AB and the direction of
motion of B is inclined at 45 degrees to BA. If e =%, find the
components of their velocities after impact in the direction AB.
Hence find the loss of kinetic energy during impact.

9. Two elastic particles P and Q of masses 3m and m respectively
are at rest and in contact, each being freely suspended from a fixed
point O by a light inelastic string of length a. The particle P is drawn
aside to a point A where the string is taut and makes an acute angle a
with the downward vertical. P is then released from rest and im-
pinges directly with Q, the coefficient of restitution being 5. The
particle Q reaches a point B on A0 produced at the instant when the
string OB becomes slack. Show that cos « = {5 and find the speed
of @ at this instant. (London)

10. Two smooth spheres 4 and B of equal radii but of masses
20kg and 10kg respectively, are on a smooth horizontal table.
Bis at rest and 4 moving at 4 m/s strikes it obliquely at an angle of
60 degrees with the line of centres. After the impact, find A’s speed,
B’s speed, the angle between A’s and B’s directions of motion and
the loss of kinetic energy.
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EXERCISES 13*

1. A cricket ball weighing 160 g is travelling horizontally at 25 m/s
directly towards a batsman just before it hits the bat. He returns the
ball directly down the pitch. On leaving the bat it is travelling at
20 m/s horizontally. Find the impulse imparted to the ball by the bat.

2. The water from a fire hose issues from a circular nozzle of
diameter 50 mm and strikes a vertical wall at right angles at 40 m/s.
If the water does not rebound from the wall, find the thrust on the
wall. (Assume that 1 m? of water weighs 1 000kg.)

3. A gun of mass S tonne is free to move on a horizontal plane.
It fires a shell of mass 15 kg with a speed of 600 m/s relative to the
ground. If the angle of elevation of the gun is 45 degrees, find the
initial direction of motion of the shell relative to the ground.

4. A bullet of mass 60 g is fired horizontally with a speed of
500 m/s into a block of wood of mass 30 kg. The block of wood is
suspended by a light inextensible string of length 5m. Find the
angle through which the block and embedded bullet swing. (Give
your answer to the nearest degree.)

5. A fire engine picks up water from a lake and delivers it at the
same level through a circular nozzle of diameter 80 mm at a speed of
30m/s. The jet strikes a vertical wall at right angles at this speed
and the water does not rebound from the wall. Find (a) the effective
power of the engine, (b) the steady force exerted on the wall.

[1 m3 of water weighs 1000 kg] (London)t

6. Two particles, each of mass m, lying on a smooth horizontal
table, are connected by a light inextensible string of length Sa.
Initially, they are at points 4 and B, where AB = 3a. They are
projected simultaneously at right angles to AB and in opposite
directions, each with speed V. Find the impulse in the string when
it becomes taut.

7. Two particies, of masses M and m, are connected by a light
inextensible string. They are projected simultaneously from the
same point on a smooth horizontal table, with speeds U and u
respectively, in horizontal directions at right angles. Show that,
after the string becomes taut, both particles move at the same angle 6
to the direction of the string at the instant of tightening, where

(M + m)Uu
tanf = —————— .
n MU? — mu?

Show also that the loss of kinetic energy due to the tightening

* Exercises marked thus, f, have been metricized, see Preface.
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of the string is

1 Mm
2M+m

8. Two particles A and B, of masses 10 kg and 15 kg, respectively,
are connected by a light inextensible string which passes over a
smooth pulley. Initially, A is moving upwards and B downwards
with speeds of 12 m/s. B is instantaneously stopped and released.
Show that the string becomes taut again when the first particle is
at rest, and find the impulsive tension in the string as it tightens.

9. Two small equal masses are tied to the ends of an inelastic
string of length 5 m. They lie very close together on the ground and
one mass is projected away from the other with a velocity whose
horizontal component is 6 m/s and vertical component 16 m/s. Show
that the string becomes taut when this mass is at the highest point
of its path. Find the speeds of the masses immediately after the
string becomes taut. (London)t

10. Two particles 4 and B, of masses 3m and 2m respectively,
lie at rest on a smooth horizontal table. A4 is projected directly
towards B with a speed u. If the coefficient of restitution is 2, find
the speed with which B begins to move. After moving a distance d,
B strikes a vertical plane at right angles and rebounds. If the
coeflicient of restitution between B and the plane is also %, how far
does B travel from the barrier before it next collides with 4? Find
the impulse between the particles on their second impact.

11. Two spheres 4 and B, of masses 4 kg and 2 kg, respectively,
are travelling in the same direction on a smooth horizontal table
at speeds of 3m/s and 2 m/s. A impinges directly on B, find their
speeds after impact, the impulsive reaction between the spheres and
the fractional loss of kinetic energy during impact. The coefficient
of restitution is 1.

12. An elastic ball falls vertically onto a horizontal plane with
speed u. It continues to bounce. If the coefficient of restitution is e,
find the total distance the ball travels after the first impact and the
time taken to travel that distance.

13. Two particles, of equal mass, are connected by an inextensible
string of length 2a. They are placed at points 4 and B on a smooth
floor, such that AB is perpendicular to a smooth wall, 4 being
distant 3a from the wall and B being distant a from the wall. The
particle at A is projected towards the wall with velocity u at an angle
tan~' 6 with the wall. If the string next becomes taut when the
moving particle has reached a point C on the floor such that angle
ABC =tan~' (%), find the coefficient of restitution between the

(U? + u?).
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particle and the wall. Find the speed with which the particle at B
begins to move. (London)

14. Three small smooth particles 4, B and C, of equal mass, are
connected, 4 to B and B to C by two inextensible strings of equal
length. The particles lie in a straight line on a rough horizontal table
with Bin between and touching A and C. A is projected horizontally
away from B in the direction of CBA with a speed of 12 m/s. If the
coefficient of friction p is 4, find the speeds with which B and C
begin to move.

15. A sphere A, of mass 4kg, and a sphere B, of mass 2 kg are
travelling in opposite directions along a straight line on a smooth
horizontal table at speeds of 10 m/s and 5m/s respectively. If the
coefficient of restitution is 4, find their velocities after impact. If the
impulsive reaction between the spheres is equivalent to a constant
force F acting for 0-02 seconds, show that F = 1 000/3 N.

If the impulse between the spheres were increased by 20 per cent,
find the new velocities after impact and show that the coefficient of
restitution would be 2. (WJ.E.C)t

16. Twosmooth spheres of masses 30 gand 40 g, but of equal radii,
move with their centres on the line r = A4i. They impinge upon
one another moving with velocities 18i and — 30i cm/s respectively.
If e = 2, find their velocities after impact and the kinetic energy
which is lost in the collision.

17. Four equal particles, each of mass m, lie on a smooth hori-
zontal table. They are joined by four equal, taut, inextensible strings
which form the sides of a square ABCD. Animpulse I is given toone
particle A in the direction CA diagonally outwards from the square.
Find the initial speeds of the four particles.

18. Two particles moving with speeds u,, u, in the same straight
line (u, > u,), impinge directly. Ifm,,m, are their respective masses
and e the coefficient of restitution, show that the loss of kinetic energy
on impact is

1 mym,

e i 2 _ 201 . 2
2m, + mz(ul uz) (1 e’).

19. A particle of mass 3m, moving with speed 4v, impinges directly
on a particle of mass 2m, moving in the opposite direction with a
speed 3v, and is brought to rest. Prove that the velocity of the
second particle is reversed in direction, but unchanged in magnitude,
by the impact, and that the coefficient of restitution between the
particles is 3.

What is the loss of kinetic energy at the impact? (Oxford)
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20. Two parallel walls are 12 m apart. A point P on the floor is
3 m from one wall and a point Q is 4 m from the other wall, the line
PQ being perpendicular to the walls. A particle is projected with
speed 1 m/s from P directly towards the nearer wall and simul-
taneously a second particle is projected from Q with speed 2 m/s
directly towards the wall nearer to it. The floor is smooth and the
coeflicients of restitution between the particles and the walls, and
between the particles themselves, are in each case 3. The particles
meet at a point X and the first particle is brought to rest by the
impact. Find the distance of X from the nearer wall and the ratio of
the masses of the particles.

Find also the time that will elapse before a second collision between
the particles occurs. (London)t

21. A smooth sphere impinges directly on a stationary smooth
sphere of double the mass. If 43 of the original kinetic energy is lost
during the impact, find the coefficient of restitution between the
spheres.

Verify that the velocity of the centre of mass of the two spheres is
unchanged by the impact. (London)

22. Two smooth spheres, 4 and B, of equal radii and masses,
mand 2m, respectively, are lying at rest on a smooth horizontal table.
A is given a velocity v = ai + aj and strikes B. At the moment of
impact the equation of the line of centres is r = A, where 1 is a
parameter. If the velocities of 4 and B after the impact are u,j and
u,i respectively, show that, the coefficient of restitution is 0-5 and
find u, and u, in terms of a.

23. An elastic particle of mass m is projected horizontally with
velocity u from the centre of a circular ring, of mass nm and radius a,
lying at rest on a smooth horizontal table. If e is the coefficient of
restitution between the particle and the ring, find the velocities of
the ring and the particle after each of the first two impacts.

Show that at the moment of the second impact the ring has moved
through a distance 2a(1 + e)/(n + 1)e. (J.M.B)

24. Two smooth vertical walls stand on a smooth horizontal floor
and intersect at an acute angle 6. A particle on the floor is projected
horizontally at right angles to one wall and away from it. After one
impact with each wall the particle is moving parallel to the first wall
struck. If the coefficient of restitution between the particle and each
wall is e, show that (1 + 2e)tan? 0 = 2.

Show that if the particle leaves the second wall in a direction
parallel to the first wall struck, 6 cannot exceed 30 degrees.

(London)

25. Three equal spheres 4, B and C rest in that order in a straight
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line on a smooth horizontal plane. If A is set moving towards B,
and if the coefficient of restitution between any two spheres is 3,
show that there are altogether three collisions and that the final
velocities of the spheres are in the ratios

13:15:36. (London)

26. Two particles A and B moving on a straight line always have
the same acceleration a. At time ¢ = 0 their velocities are u, and u;,
respectively. What is the velocity of B relative to A at time ¢?

A particle P of mass m is dropped from rest at a fixed point O
on to a horizontal plane, its speed immediately before striking the
plane being U. At the instant at which P rebounds from the plane,
a second particle Q of mass 2m is dropped from rest at 0. If e is
the coefficient of restitution between P and the plane, show that P
will strike the plane a second time before striking Q if e < 3.

If ¢ = 3, show that P and Q collide at a time 2U/(3g) after Q
has been dropped, and find the speed of P immediately after the
collision if the coefficient of restitution between P and Q is %.

[The impacts may be assumed to take place instantaneously.]

(W.LE.C)

27. Three equal spheres, centres A, B, C, lie at rest in a straight line
on a smooth horizontal table. The coefficient of restitution between
any two spheresise. A is projected with speed U to strike B directly
which then strikes C. Find the speeds of the spheres after the two
collisions and show that A strikes B again whatever the value of e.

28. If in Question 27, the spheres had had masses m, Am and A’m
respectively,and e > A, show that there would only be two collisions.

29. Ifin Question 27, the spheres had had masses 2m, 7m and 14m
respectively, and e = %, find their velocities after two collisions.

30. Two equal spheres B and C, each of mass 4m, lie at rest on a
smooth horizontal table. A third sphere A4, of the same radius as
B and C but of mass m, moves with velocity V along the line of
centres of Band C. The sphere 4 collides with B, which then collides
with C. If 4 is brought to rest by the first collision, show that the
coefficient of restitution between A and B is }.

If the coefficient of restitution between B and C is 3, find the
velocities of B and C after the second collision. Show that the total
loss of kinetic energy due to the two collisions is 27mV2/64.

(J.M.B.)

31. Two smooth spheres 4 and B of equal radii and masses m
and m/2, are lying at rest on a smooth horizontal table. A is given
a velocity ui and strikes B. At the moment of impact the equation of

the line of centres is r = Ai — ﬁ& j, where A is a parameter. If the
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coefficient of restitution is 0-5, show that the velocity of B after
impact is (ui — \/§uj)/4 and find the velocity of 4.

32. Prove that the work done in stretching a string, of elastic
modulus 4, from its natural length / to a length | + x is 3(ix?/l).
The ends of a light elastic string, of modulus Mg and natural
length 2a, are fixed to two points P and Q of a smooth horizontal
table, the length of PQ being 2a. A particle of mass M is at rest on
the table, attached to the mid-point of the string. A second particle
of mass m is projected along the table at right-angles to PQ and
strikes the first particle, being thereby reduced to rest. The string is
stretched to a maximum length of 4a before bringing the first particle
instantaneously to rest. This particle then recoils and strikes the
second particle. Prove that the coefficient of restitution between the
particles is m/M, that the initial velocity of the second particle is
M\/(2ag)/m and that the final velocity of this particle is VJ(2ag).
(Oxford)
33. A particle is projected from a point on the floor and hits the
ceiling, which is smooth. The height of the ceiling is 4 times the
height which the particle would have reached in the absence of the
ceiling, and the coeflicient of restitution is e. Prove that the distance
from the starting point to the point where the particle hits the floor is

%[1 _ (1 + e)(l _ ;1)1/2 + {ez + A(l _ eZ)}l/'Z]

times the distance in the absence of the ceiling. (Oxford)
34. A smooth circular tray is fixed horizontally and an elastic
particle is projected along the surface from a point 4 just inside the
rim. The first two impacts with the rim occur at points B and C,
such that the arc AC subtends a right angle at the centre of the tray
and B is on this arc. Assuming that impulses with the rim are
horizontal and that the coefficient of restitution is %, show that the
direction of projection makes an angle tan~! 2 with the diameter
through 4 and find the ratio of the times taken to describe A Band BC.
: (London)
35. A passageway has a smooth horizontal floor and two long
smooth parallel vertical walls which meet the floor along lines 4B
and DC respectively, distant a apart. A small sphere is projected
from A4 in a direction making an acute angle @ with AB so as to strike
a point of DC. At the 2nth impact the sphere strikes 4B at B. The
coefficient of restitution between the ball and each wall is e. Prove
that the length of AB is

a(l — e*"ycot @
e2n*1(1 _ e) .
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Determine the time taken to complete the journey from A to B
if the speed of projection is w. (London)

36. A smooth circular horizontal table is surrounded by a smooth
rim whose interior surface is vertical. Two equal particles are
projected simultaneously with speed V along the table from a point
A of the rim in different directions each making 30 degrees with the
diameter 4B through A. If the coefficient of restitution e of each
particle with the rim of the table is greater than §, prove that, after
one impact at the rim for each particle, the particles meet at a point
of the line AB. If when they meet they coalesce, prove that their
common velocity subsequently is

4(1 — o)V. (JLM.B.)

37. Two smooth uniform spheres 4 and B, of the same radius but
of masses m and km respectively, rest on a horizontal table. A is
projected along the table towards B with speed u so as to strike B
obliquely at an angle 60 degrees with the line of centres. The
coefficient of restitution is 3. Show that B’s speed after impact is
3u/{4(k + 1)] and find A4’s speed after impact.

If, after impact, A moves in a direction making an acute angle
tan! (2\/3) with B’s direction of motion, find the value of k and
show that the loss of kinetic energy on impact is symu?.

(London)

38. A smooth inelastic sphere of mass M lies on a smooth
horizontal table, and a second smooth completely inelastic sphere of
mass m falls on it. At the moment of impact the line of centres makes
an angle o with the vertical, and the speed of the falling sphere is u.
Prove that the speed of the first sphere after impact 1s

mu sin a cos o
M + msin?a’
Prove that the loss of kinetic energy is
Mmu? cos?
2AM + msin? )

39. Two smooth elastic spheres of masses m,; and m, and of equal
radii lie at rest on a smooth horizontal floor. The mass m, is
projected along the floor in a direction parallel to a smooth vertical
elastic wall and strikes m, obliquely. Subsequently m, strikes the

wall at an angle o with the wall. The coefficients of restitution
between m; and m, and between m, and the wall are each e. If the
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final velocities of the spheres are parallel, show that
my(1 + e)? cos? a = (my + my)e. (London)

40. A smooth sphere 4 of mass m, moving with speed u, strikes
a stationary sphere B of mass 3m obliquely. If the direction of
motion of A is turned through a right angle, find the impulsive
reaction between the spheres. [Let e be the coefficient of restitution.]

41. Two smooth spheres of equal radii, masses m and 2m, are
at rest on a smooth horizontal table. The first ball 4 is projected
along the table and strikes the second one B obliquely. After the
impact the directions of motion of 4 and B make equal angles 0
with the original direction of A. If the coefficient of restitution is 4,
show that @ = 45 degrees.

42. A ball is dropped from the roof of a lift ascending with an
acceleration f m/s. If the height of the lift is h m and the coefficient
of restitution between the ball and the floor of the lift is e, show that
the time which elapses before the ball stops bouncing is

1+e 2h

43. Twoidentical smooth spheres A and B moving on a horizontal
table with velocity vectors 2Vi and Vj respectively, collide and the
equation of the line of centres at that instantisr = A sin ai — 1 cos o,
where A is a parameter. If the velocity vector of the sphere B after
the collision is ui, and the coefficient of restitution between the
spheres is §, prove that tan « equals either 1 or 4, and in each case
find u and the velocity vector of the sphere A after the collision.

(London)

44. Two smooth spheres 4 and B have masses 2m and m res-
pectively,and velocity vectors 3ui + 4ujand —4ui + 3ujrespectively,
when they collide with their line of centres parallel to the unit vector i.
If the impact causes a loss of energy equal to the original kinetic
energy of the sphere B, prove that the coefficient of restitution
between the spheres is \/(23/98). (London)
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14.1. BASIC THEORY

WE shall now consider the motion of a particle moving under
gravity with any initial velocity. Two simplifying assumptions will
be made:

(@) The resistance of the air is negligible.

(b) The motion is confined to a moderate distance from the
Earth’s surface so that the acceleration due to gravity is uniform.

If the initial velocity of the particle is of magnitude u making an
angle of 0 with the horizontal, then initially the vertical component
is u sin 0, and the horizontal component is u cos §. The only force
acting on the particle is its weight. Therefore, it moves vertically
with uniform acceleration —g and horizontally with uniform
velocity u cos 6. The results of Section 5.3 can be applied vertically
with f as —g and the initial velocity u sin 0 thus

Vertically v=usinf — gt
s = usin 0t — gt?
v? = u*sin? 6 — 2gs.
Horizontally v =ucosf and s=ucosot.
Example 1. A particle is projected with a speed of 30 m/s in a direction

making an angle of 30 degrees with the horizontai. Find its position
and the magnitude of its velocity after 2 seconds.

y
30 m/s, P

o

30

Figure 14.1

Let O be the point of projection, P the position of the particle
after 2 seconds and Ox, Oy, axes horizontally and vertically through
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O respectively. (Refer to Figure 14.1))

Vertically v=usinf — gt
= 30sin 30° — 9-8 x 2
=15-196
= —4-6m/s o)
and s = usin 0t — igt?
ie. yp = 30sin 30°.2 — 49-8 x 22
=30 — 196
= 104 m. ... (1)
Horizontally v=ucosf
= 30 cos 30°
= 15./3m/s ... (iii)
and s = ucos 0t
ie. xp = 30co0s 30°.2
= 30,/3 = 5196 m. e (i)

From (i) and (iii)

el = J(—46)% + (15/3)

= /6962
= 2638 m/s.

From (ii) and (iv) P is the point (52-0, 10-4) and the particle is moving
at 264 m/s. The negative value of the vertical component of its
velocity indicates that the particle is moving downwards.

Example 2. A particle is fired, from the top of a cliff of height 49 m,
with a speed of 14 m/s at an angle of 45 degrees with the horizontal.
Find the maximum height reached and the point where the particle
enters the sea.
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Let A be the highest point reached and B the point where the
particle enters the sea. Take horizontal and vertical axes as shown
in Figure 14.2.

At A the vertical velocity is zero.

Using v? = u?sin? 6 — 2gs
we have 0 =14%sin245° — 2 x 9:8h
142
h = =
Fx98-°>m

At B the vertical displacement is —49 m and vertically
s = usin 0t — gt*
—49 = 14sin 45°t — 4912,

giving 7t2 — 10/2t — 70 = 0.
102+ J(=10/2)* — 4 x 7(—170)
- 14 ’

and taking the positive root,

t = 4-33 seconds.

Horizontally s = ucos 0t
OB = 14 cos45° x 433
= 42-86 m.

The maximum height reached is 49 + 5 = 54 m, and the particle
enters the sea at a point distant 42-9 m from the foot of the cliff.

Example 3. A particle is fired from a point P on a horizontal plane
with a speed u, at an angle of 8 with the horizontal. Find the time of
its flight, and its range. Deduce the maximum range.
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~5g ~
Pa— — - - - Range- — — - -—»Q

Figure 14.3

Let @ be the point at which the particle meets the plane, and T
its time of flight (refer to Figure 14.3).
At Q the vertical displacement is zero.

Vertically s = usin 6t — 3gt>.
0 = usin 6T — 3gT>.
T=0 or (Qusinf)/g.

T = O refers to the point P and, therefore, T = (2u sin 0)/g is the
time of flight.

Horizontally s=ucos8.T
Range = ucos 8. (2u sin 0)/g
= (2u? sin 0 cos 0)/g
Range = (u? sin 20)/g. v ()

For a given speed of projection u, the range has a greatest value
when

sin20 = 1, 1e. 20 = n/2; 0 = n/4.
Hence R = (42 sin m/2)/g
R... = u*/g (when 0 = n/4). ... (i)
From the results of (i) and (i1),
Range = (4?/g) sin 20 = R, sin 20
sin 20 = R/R,,., (R € R,,)
20 =sin ' (R/Rpp) = 20 . (0 < 2 < 1/2)
20=20¢ or m—2a
0=a or nf2 —-a
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and the two possible directions are equally inclined to the direction
for maximum range. (Refer to Figure 14.4.)

Figure 14.4

Exercises 14a

1. A particle is projected with a speed of 32 m/s at an angle of
40 degrees to the horizontal. Find the horizontal and vertical
components of its velocity after 2 seconds.

2. A particle is projected from a point O with a speed of 7 m/s
at an angle of 30 degrees to the horizontal. Find its horizontal and
vertical displacements from O after 3ths of a second.

3. A particle is projected from a point O with a speed of 28 m/s
at an angle of tan™ ! 2 to the horizontal. Find its vertical displace-
ment at the moment when its horizontal displacement is 40 m.

4. A stone is thrown with a speed of 14 m/s at an angle of pro-
jection of 60 degrees. Find (a) the greatest height reached (b) the
time of flight (¢) the range on a horizontal plane.

5. The greatest range of a projectile on a horizontal plane is
20000 metres. Find its range when the angle of projection is
(a) 30 degrees (b) 224 degrees (c) 75 degrees.

6. A ballis thrown with a speed of 28 m/s at an angle of projection
of tan~! 2. Find (a)the greatest height reached (b) its vertical height
when the direction of motion is inclined at an angle of 45 degrees to
the horizontal.

7. A particle is projected from a point O at an angle of projection
of 45 degrees. It passes through a point P whose horizontal and
vertical displacements from O are 3a and a respectively. Find the
speed of the particle when it passes through P.

8. A bullet is projected with a speed of 350 m/s at an angle of
projection of tan~'3. Find (a) its range on a horizontal plane
through the point of projection (b) the greatest height reached
(c) its speed and direction when at a height of 1 250 m.

9. A particle is projected from a point O. After 5 seconds its
horizontal and vertical displacements from O are 60 m and 57-5m
respectively. If the particle is still rising, find its initial velocity.
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10. The furthest distance a man can throw a stone is 45 m. What
is the time of flight and how high does the stone rise?

14.2. ADVANCED EXAMPLES

Example 1. A particle is projected under gravity with speed u at an
angle of projection 0. Obtain expressions for the horizontal and
vertical displacements x and y at time t after projection, and deduce
an equation for the path of the particle. A particle has an initial speed

of 2./70 m/s and just clears a wall which is 5 m high and 20 m from
the point of projection. Find the two possible angles of projection.

Horizontally the velocity is constant and equal to u cos 0
. X = ucos 0t R (]
Vertically
y = usin 0t — jgt? ... (1)
From (1)
t = x/(ucos ) substituting in (ii)
y = usin 0(x)/(u cos 6) — 3g(x?)/(u? cos? 6)
y = xtan 0 — (gx2)/(2u? cos? 9) ... (ii)
which is the equation of the path of the particle. The path is a
parabola with axis vertically downwards.
In the second part of the question, since the particle just clears
the wall, the top point of the wall will be a point on the path. Thus

(20, 5)is a point whose coordinates satisfy equation (iii). Substituting
and noting

u=2/70mjs, u’> =280

we have

5=20tan 6 — (98 x 20%)/(2 x 280 cos? 8).
ie. 5=20tan 0 — 7sec® 8

5=20tan 6 — 7(1 + tan?6)

or 7tan’0 — 20tan  + 12 =0
’ (7tan @ — 6)(tanh — 2) = 0
tanf =% or 2

16

O=tan"'$ or tan"'2.
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Example 2. A bird is 10 m vertically above a man who throws a stone
at an angle of projection of 6. The bird is flying with a uniform speed
of 14 m/s in a direction making 60 degrees with the horizontal. Show
that, for the stone to hit the bird, tan 0 > 2 + \/5

&

Or

I/l \d
<

’0
»

<+ —-C — —»
3

Figure 14.5

For the stone to hit the bird the bird and stone must be in the
same place at the same time ¢, that is, their x and y coordinates
must be equal (refer to Figure 14.5).

For the stone

x = ucos 6t B ()]
y = usin 0t — 3gt? ... (iD)
For the bird
x = 14 cos 60°t,
ie. x =Tt ... (i)
y = 14sin 60°t + 10,
ie. y = 73t + 10. oo (iv)
Equating (i) and (iii} and also (i) and (iv),
ucosOt =7t ....(a)
usin 0t — 3gt2 = 7./3t + 10. ....(b)

From (a) u = 7/cos 6, and substituting for u in (b),

7
—sin Ot — 3gt?> = 7./3t + 10,
cos()sm 38 f +

or 49> — (Ttan 8 — 7./3) + 10 = 0.
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This is a quadratic equation giving two values of t. For it to
have real roots
(Ttan 6 — 7./3)* > 4 x 49 x 10
|7tan @ — 7\/§| =>2x7,
so that tan 6 — ﬁ =2

and tan 6 > 2 + /3.

[The alternative result tan 6 — \/3 < —2 gives negative values of t.)

In problems concerning projectiles landing on inclined planes
it is generally better to resolve perpendicular to the plane rather
than vertically. In this case, if « is the inclination of the plane, the
acceleration is —g cos a perpendicular to the plane.

Example 3. A bullet is projected from a point O on a plane inclined
at 45 degrees to the horizontal. The velocity of projection is u at
an angle of tan~ ' (3) to the line of greatest slope of the plane. Find
the range of the bullet and show that it meets the plane at right angles.

If P is the point at which the bullet strikes the plane, OP is the
range.

2
¥

Figure 14.6
Let T be the time of flight to P and 8 the angle the line of projection
makes with the plane, thentan 0 = 4 (0 < 6 < n/2)

1 2 .
sinfg = —, cosll = — ..()
NG NG
(refer to Figure 14.6).
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At P the displacement perpendicular to the plane is zero, therefore
resolving perpendicularly we have,

0 = usin 0T — 3g cos45°T?
1
=u.—T ~ (2)/2/2)T? from (i)

NE
T=0 or (2/2uw/g\/5). .. (i)

If PQ is the perpendicular from P to OQ (refer to Figure 14.6),
resolving horizontally we have

OPcos45° = 0Q = ucos (0 + 45°)T ... (ii1)
Now cos (0 + 45°) = cos 6 cos 45° — sin 0 sin 45°
1 1

from (1)

S
4
4
-

1
_ﬁ

substituting in (iii)

OP/ /2 = u. \/l_ zg\\/;‘

= (2/20)/(59).
This is the range of the bullet up the plane.

To show that the bullet strikes the plane at right angles, we note
that the velocity along the plane is given by

v=ucosf — gcos45°t.
At P

N SV
V5OV2 a5

N
BNGINE
=0.

Therefore the bullet strikes the plane at right angles.
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Example 4. A particle is projected from a point O on a plane inclined
at an angle a to the horizontal. If the velocity of projection is u at
an angle 0 to the horizontal, find the range of the particle on the
inclined plane. Deduce the maximum range up and down the plane.

prat®

Figure 14.7

Let T be the time of flight to the point P where the particle meets
the plane (refer to Figure 14.7).
At P the displacement perpendicular to the plane is zero, resolving
perpendicularly we have
0 =usin(@ — a)T — }gcos aT?

_ 2usin(0 — o)
- gcosa

T=0 or T

Resolving horizontally (refer to Figure 14.7),
OPcosa = 0Q = ucos 0T
OP cos o0 = ucos 82u sin (6 — a))/(g cos o)
OP = (2u? cos 0 sin (8 — w))/(g cos? ).

To deduce the maximum range we re-write the equation for R
(OP) as

u2

R = i -
g cos? a[2 cos Osin (0 — a)]

2

" geosla [sin[6 + (6 — a)] — sin [0 — (6 — )]

2
o czs2 [sin (20 — ) — sin .

For a constant speed of projection u, only 8 can vary. Therefore
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R is a maximum when sin (20 — «) has a maximum value, that is,
when sin (20 — ) = 1. Hence for maximum range

T
26 —a="2
*=3
¥4 oL
g="42
or 173
2
Rmaxzu—z(l—sina)
g cos? «

= (u*(1 — sin a))/(g(1 — sin? )
= u?/(g(1 + sin @)).

In the case of projection down the plane the only difference is
that « becomes — « (refer to Figure 14.7), in this case

Rmax = uz/(g[l + sin(—a)])
= u?/(g(1 — sin a)).

Example 5. A shell is fired with speed u from a point on a cliff of
height h above sea level. Find the greatest horizontal distance the
shell can cover before landing in the sea.

-— > — >
.

Figure 14.8

If d is the required maximum distance since h is constant, R (refer
to Figure 14.8) is also a maximum, but R,,, down an inclined plane
is given by (refer to Example 4)

R = u2/(g(1 — sin @) )
Also h/R,. = sina R 1))}
From equations (i) and (ii) ’

u2

Rmax P e—
g(l - h/Rmax)
Rmax(l - h/Rmax) = uZ/g
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and R = (Wl/g) + h

3 2 u : 2
(Rmax_h = _+h —h
g
4 2
=\/[“—2+2hi+h2—h2]
g g

= g, /(u? + 2gh).

Exercises 14b

1. Two particles A and B are projected simultaneously from a
point O and both particles strike a horizontal plane through O at
the same point P, A arriving first. If OP is 6 m and the speeds of
projection of A and B are each 910 cm/s, verify that the angle of
projection of A is sin~* (%)

2. A particle has a horizontal range of 15 m when projected at
an angle 6 to the horizontal with speed u. The greatest height
reached is 5 m, find u and 6.

3. A cricket ball is thrown with a speed of 21 m/s. Find the
greatest range on a horizontal plane. If the distance the ball is
thrown is 22-5 m, find the two possible angles of projection.

4. A particle is projected from a point O at an angle of projection
of 60 degrees with speed u. At the same time a second particle is
projected from O with speed u but with a different angle of projection.
If the two particles land at the same point, find the distance between
them after ¢ seconds.

5. Aparticleisprojected withspeed V. R,,R,, Rarethe maximum
ranges up a plane, down the same plane and on the horizontal,
respectively, at this speed of projection. Use the results of Example 4,
Section 14.2, to show that

1 1 2

R, + R, R
Show also that the direction of projection in each case bisects the
angle between the plane and the vertical.

6. A particle is projected, with a speed of 600 m/s at an angle of
projection of 45 degrees, from the foot of a plane of inclination
30 degrees. Find the range on the plane and the time of flight.

7. A particle is projected from a point A4 with a speed of 40 m/s
at an angle of projection of 30 degrees. Find the rate at which its
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distance from A is increasing 2 seconds after projection. [Hint,
use V.i=r]

8. Show that the range of a projectile on an inclined plane is
given by

R = (2u®)[sin 0 cos (8 + ®)]/(g cos? a),

where u is the speed of projection, « the inclination of the plane and
0 the angle of projection with respect to the line of greatest slope of
the plane. Hence, show that the ratio of the maximum range down
an inclined plane to the maximum range up the plane is

(1 + sina):(1 — sin a).

9. A particle is projected at an angle 6 to the horizontal. Show
that it will strike an inclined plane through the point of projection
at right angles if cota = 2tan (6 — «), where « is the angle of
inclination of the plane.

10. A man A stands on a cliff of height % and notices another
man B on the seashore a distance k from the foot of the cliff.
Simultaneously, 4 throws a stone with speed u and angle of pro-
jection « and B throws a stone with speed 2u and angle of projection
p away from the cliff, the trajectories of the two stones being in the
same plane. If the two stones collide, show that,

2sin (B + ¢) = sin(x + &), where ¢ = tan™! (h/k).

14.3. PROJECTILES AND IMPACT

When a smooth particle meets a smooth plane, the impulse’ is
perpendicular to the plane and motion parallel to the plane is
unaffected. In the following examples and exercises the particles
and surfaces are assumed smooth.

Example 1. A ball is projected from a point A on smooth level ground.
It strikes a vertical wall normally and returns to A after bouncing once
on the ground. The coefficient of restitution between the ball and
the wall is %, find the coefficient of restitution between the ball and
the ground.

| P

A 8
Figure 14.9
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Refer to Figure 14.9.
Distance AQ = 4 range = (u?/2g) sin 20 ]

where u is the speed of projection at an angle 6 to the horizontal.
;I‘he ball strikes the wall normally and the coefficient of restitution
1S 5.
Approaching P
Horizontal speed is u cos 8, vertical speed is 0.
Leaving P
Horizontal speed is —u cos 0, vertical speed is 0.
Since the vertical velocity is unaltered by the impact, the time of
flight is unaffected. That is the time from 4 — P — B is still
(2u sin 0)/g. Therefore the time of flight from P to B is (u sin 0)/g

2
usind _u” oo . (i)
4g

QB=%cos0.

Approaching B
Horizontal speed is —3ucos#f. Vertical speed is found from
v—u+ft 1e.v=0— g.(usin6/g)
vertical speed is —u sin 6.

Let the coefficient of restitution between the ball and the ground
be e. Then, since the ground is smooth
Leaving B

Horizontal speedisstill —4u cos 6. Vertical speed is eu sin §. Now

AB = AQ — BQ = (1*/2g) sin 20 — (1%/4g) sin 20
[refer to (i) and (ii)]
= (u?/4g) sin 20.
Therefore, if T is the time from B to A4
—34ucos 0T = (u?/4g) sin 20
T = usin 6/g.

After this time, the particle returns to A. Therefore applying
s = ut + % ft* vertically we have

usinf® 1 u?sin®0

0 =-cusing. ~3 2
2 2
o Wisin 0(6_1)
g 2
and —1
e—2.
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Example 2. A ball falls freely from a height of 24 m onto a point P
of a smooth plane. The plane is inclined at an angle of 60 degrees to
the horizontal. The ball rebounds to meet the plane again at Q. If the
coefficient of restitution between the ball and the plane is §, find PQ.

Figure 14.10

At P the speed before impact (refer to Figure 14.10) is given by
¥ =0+ 2g.25=">5¢
v=/5%
= 7 m/s.

The speed parallel to the plane is unaltered. Before impact it is

7 cos 30° = 7\/5/2 my/s. Therefore, after impact it is 7\/3/2 my/s.
Speed perpendicular to the plane:
Before impact is 7 sin 30° = 7/2 m/s.
After impact itis —7e/2 = —7/4m/s.
At Q the distance moved perpendicular to the plane is zero.

0= —(7/4)T + 4g cos 60°T?

where Tis the time of flight from P to Q and g cos 60° is the resolved
part of gravity perpendicular to the plane

= (7/g) = (5/7)

The distance moved down the plane under an acceleration g sin 60°
is therefore

= (7/3/2)T + Hg sin 60°)T?
= (7/3/2)5/7 + 9 8\/_ 25

2 49
532 + 5/3/4
15./3/4 m.
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Exercises 14c

1. A particle falls freely from a height of 2:5m onto a point P of
a smooth plane. The angle of inclination of the plane is 30 degrees.
The particle rebounds and meets the plane again at Q. Ifthe distance
PQ is 1-2m, find the coefficient of restitution between the ball and
the plane.

2. A ballis projected from a point O and strikes a smooth vertical
wall returning, without bouncing, to the point of projection. The
time of flight is 2 seconds, the coefficient of restitution between the
ball and the wall is § and the horizontal distance from the point of
projection is 490 cm. Find the angle of projection.

3. A ball is thrown from a point 4 and strikes a smooth vertical
wall, rebounds and lands at A. The coefficient of restitution between
the ball and the wall is e, and R is the horizontal range from 4 in
the absence of the wall. Prove that the horizontal distance from
A to the wall is (eR)/(1 + e).

4. A particle is projected, at an angle 6 to the horizontal, from a
point P on a smooth inclined plane. After one bounce on the plane
the particle returns to P. Prove that cot(6 — a) = (1 + ¢)tan ¢,
where o is the inclination of the plane and e is the coefficient of
restitution between the particle and the plane.

EXERCISES 14*

1. A boy knows that the furthest distance he can throw a ball is
24 m. He is 16 m from a wicket: at what angles of projection can
he throw the ball in order to hit the wicket?

2. A bullet is fired from the top of a cliff 120 m high, with a speed
of 70 m/s, at an angle of elevation of sin "' 4. Find how far the bullet
travels in a horizontal direction before it enters the sea.

3. A particle is projected with speed u from a point 4. It strikes
atright angles at B a plane through A4 whose angle of inclination is a.
Show that

(a) The vertical height of B above A4 is

(2u? sin? a)/(g(1 + 3 sin® ).
(b) The time of flight from A to B is

(Qu/(g/(1 + 3 sin* a)).

4. A particle is projected from A with speed u to pass through a
point B. The horizontal and vertical displacements of B with respect

* Exercises marked thus, 1, have been metricized, see Preface.
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to A are b and a respectively. Show thatif u?> > g[b + /(a® + b?)]
there are two possible angles of projection.

5. A particleis projected up and down a plane inclined at tan ! (3)
to the horizontal, the speed of projection and the angle of projection
being the same in each case. If the range up the plane is one-third
of the range down the plane, find the angle of projection.

6. A gun is located on a coastal mountain at a height of 400 m
above sea level. It fires a shell at 240 m/s at a stationary ship.
If the shell takes 20 seconds to reach the ship, find the angle of
projection and the horizontal displacement of the ship from the gun.

7. The range of a particle on a horizontal plane is R. Show
that the greatest height h attained is given by the equation
16gh? — 8u*h + gR? = 0, u is the speed of projection. State the
condition for this quadratic in h to have real roots and hence deduce
the value of the maximum range.

8. A ball is projected from a point on the ground and just clears
the top of a wall of height 4 m whose base is 6 m from the point of
projection. If the angle of projection is 45 degrees, find the greatest
height reached by the ball.

9. Given R is the maximum range of a particle up an inclined
plane and T the corresponding time of flight, find a relation between
R and T in terms of u, the speed of projection, and a, the inclination
of the plane. If the projectile had been fired down the plane, would
the same relation hold?

10. A particle is projected under gravity from a point at the foot
of a fixed inclined plane so that its trajectory is in the vertical plane
containing the line of greatest slope through the point. If T is the
time of flight, prove that the vertical height of the particle above
the plane at time ¢t (< T) is

38T — ¢). (London, part)

11. Show that the range of a body projected up a plane inclined
at an angle « to the horizontal is

(2V2 cos 0sin (8 — w))/(g cos? a)

where the velocity of projection is V at an angle € to the horizontal.

Ifthe range down the plane is double the range up the plane, for the
same speed of projection, the angle 8 being 45 degrees in each case,
find the inclination of the plane to the horizontal. (London)

12. A cricketer threw a ball from ground level in the long field
in such a way that it fell at the feet of the wicket-keeper 60 m away.
Show that if u and v were the horizontal and vertical components,
in m/s of the initial velocity of the ball, uv = 2 940.

276



EXERCISES

By advancing 4 m towards the fieldsman the wicket-keeper could
have taken the ball at a height of 15 m above the ground. Show that
the ball was in the air for 2} seconds. (London)t

13. A particle is projected from a point 4 with velocity V at an
angle a to the horizontal. When it has reached a point P its velocity
is inclined at an angle f to the horizontal. Both « and g are taken
to be positive when the particle is rising and negative when it is
falling. Prove that:

(a) the vertical component of the velocity at P is Vcos atan f8;

(b) the height of P above the level of A4 is

V%(cos? B — cos? a)
2g cos? B :
(c) time to move from A to P is
Vsin(a — B)
T geosf
(d) Horizontal projection of AP is

V2sin(x — B)cosa
gcosf '

(Oxford)

14. A particle is projected under gravity with velocity V in a
direction inclined to the horizontal at an angle 6. Derive expressions
for the horizontal and vertical displacements, x and y, at time ¢ after
projection, and deduce an equation for the path of the particle.

A vertical section of a valley is in the form of a parabola x? = 4ay,
where a is a positive constant and the axis of y is vertically upwards.
A gun placed at the origin fires a shell with velocity ,/(2gh) at an
angle 0 to the horizontal. If the shell strikes the section at the
point (x, y), prove that

x = (4ah tan 0)/(a + h + atan? 0).

Deduce the greatest value of x as 0 varies. (J.M.B)

15. A ball is projected under gravity from a point 4 on level
ground directly towards a tall vertical mast 30 m away and strikes
the ground at the foot of the mast. Show that during its flight the
ball when viewed from A will appear to be descending the mast with
uniform speed.

Viewed from A the ball appears at one moment to be passing a
point P on the mast and half a second later to be passing a point Q
7 mbelow P. Find the initial velocity of the ball and its time of flight.

[Take g as 9-8 m/s2.] {London)t
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16. A particle is projected under gravity in a horizontal direction
from the highest point of a fixed sphere of radius a. If Vis its speed
of projection and the particle does not touch the sphere again,
show that V2 > ag.

17. A is the point of projection and B is a point on the parabolic
path of a particle moving under gravity. A light source is placed
at B. Show that while the particle travels from A4 to B, its shadow
on a vertical wall moves with constant speed.

18. A missile is projected with an initial speed of 91 m/s at an
angle of sin ™! ({2) with the horizontal. Find its range and time of
flight. Three seconds later another missile is projected from the
same point and hits the ground at the same time and in the same
place as the first missile, find its speed and angle of projection.

19. A boat is moving directly away from a gun on the shore with
speed V;. The gun fires a shell with speed V, atan angle of elevation a
and hits the boat. Find the distance of the boat from the gun at the
moment it is fired.

20. From a point on a plane hillside of inclination « to the hori-
zontal a particle is projected at right angles to the plane with speed V.
The particle subsequently strikes horizontal ground. The distances
from the foot of the hill of the point of impact with the ground and
of the point of projection are each h. Show that.

2V? = ghcot (a/2).

If the speed just before impact is double the speed of projection,
find the value of a. (London)

21. A bird flies in a straight line with uniform velocity u in an up-
ward direction making an angle  with the horizontal. At the instant
when the bird is at a height h vertically above a boy on the ground the
boy throws a stone at an angle of elevation o. Show that, whatever
the velocity of projection, the stone cannot hit the bird unless

tan o = (\/2gh/u) sec f + tan f.

If the stone merely grazes the bird so that the motion of neither is
appreciably disturbed, show that, in general, the bird will be hit
again. (London)

22. A particle is projected from a point O with velocity ¥ at an
elevation « and strikes the horizontal plane through O at 4. Find
from first principles the distance OA.

Show that if the particle is projected from O with the same eleva-
tion to hit a target at a height h above A, then the velocity of projec-
tion must be 2

V<sina
(V2sin? o — 3gh)'/* (WJEC)
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23. A ball is thrown from a point P on a cliff height h above the
seashore. It strikes the shore at a point Q where PQ is inclined at an
angle ato the horizontal. Iftheangle of projectionisalso a,show that
the speed of projection is @/(2 sin a), and that the ball strikes the
shore at an angle tan ™! (3 tan «) with the horizontal.

24. A shell is fired from a point O at an angle of elevation 60
degrees, with a speed of 40m/s and strikes a horizontal plane
through O, at a point A. The gun is fired a second time with the same
angle of elevation and a different speed V. If it hits a target which
starts to rise vertically from 4 with speed 9,/3 m/s at the same
instant as the shell is fired, find V.

25. A shell is fired from a point O with speed u and angle of
projection a to hit a target whose horizontal and vertical distances
from O are h and v respectively. Show that

gh*tan® o — 2hu® tana + gh> + 20u® = 0,
deduce that this equation has real roots in tan o« if
u* — 2gou® — gh* > 0 and hence that for the shell to hit the target

u* > gv + g /h? + 2.

26. A particle is projected horizontally with speed u from the top
edge of a staircase in a direction which will take it directly down the
staircase. The breadth of each stair from front to back is a and the
height of each stair is h. Show that ifu? < ga?/2h, the particle strikes
the first stair down.

The coefficient of restitution between the particle and each stair is
e. Show that the further conditions that the second impact is on the

second stair down are
2h
a < u(l + 2e) /?

u{l +e+ /(1 + ez)}\/% < 2a. (London)

27. A particle is projected under gravity from a point P with a
velocity whose horizontal and vertical components are p and q.
Find an expression for its range R on a horizontal plane in terms of
pand q. If, before reaching the horizontal plane, the particle had hit
a vertical wall whose distance from P was (pq)/2g and rebounded to
the point P, show that ¢ = 4 (where e is the coefficient of restitution
between the particle and the wall).

28. A particle is projected under gravity from a point P with speed

and
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uat an angle of inclination of 8 to the horizontal. Itstrikesa vertical
wall and returns to P without bouncing. If e is the coefficient of
restitution between the ball and the wall, find the vertical height of
the point of impact with the wall above P if the distance of P from the
wall is d.

29. A corridor has a horizontal floor and a ceiling 49 m high
and is closed at one end by a vertical wall. A boy standing in the
corridor throws a small ball from a height 1-3 m above the floor. If
the greatest speed with which he can throw the ball is 14 m/s, show
that he cannot hit the wall without first hitting the ceiling or the
floor if he stands further from the wall than 20-8 m.

If he stands at half this distance from the wall, find the depth
below the ceiling of the highest point of the wall which he can hit
without first hitting the ceiling or the floor.

[Take g as 9-8 m/s?] (London)t

30. From a point on a horizontal floor a particle is projected
which just clears the edge of a round table and strikes the centre.
The table is of radius 1 m and height 1-25 m and the point of projec-
tion is at a horizontal distance of 2 m from the centre of the table.
Find the velocity of projection.

Assuming the table to be smooth and inelastic, find the total
horizontal distance travelled by the particle on striking the floor.

[Take g as 9-8m/s?] (London)t

31. Two particles are projected simultaneously in the same
vertical plane, i and j being unit horizontal and vertical vectors in that
plane. The first particle is projected from the origin with velocity
vector nVcos ai + nVsinaj, and the second particle is projected
from a position hi + kj (where h > 0, k > 0) with velocity vector
—Vcos i + Vsin fj. Write down the position vectors of each of
the particles after time ¢ has elapsed.

Show that the particles cannot collide unless sin # < nsin «, and
if they do collide, prove that sin(f + y) = nsin(x — ), where

tany = k/h.
Find the condition imposed on V if the point of collision is above
the level of the origin. (London)

32. If in Question 28, the particle strikes the wall at a height h
above P, find the value of u in terms of d, h, g and e. )

33. An elastic particle is projected from a point O on a smooth
horizontal floor with horizontal and vertical components of velocity
u and v respectively. When the particle is at the highest point of its
path it strikes a vertical wall which is perpendicular to the plane of
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its path. It rebounds from the wall and after rebounding once from
the floor next strikes the floor at the point 0. If the coefficient of
restitutioxll between the particle and both wall and floor is e, show
that e = 3.
Show that when it strikes the floor for the third time after reaching
O again, the particle is at a distance 7uv/(16g) from O, and find the
total time which has elapsed since it was first projected.
(W.J.E.C))
34. Two equal particles are projected at the same instant from
points 4 and B at the same level, the first from A towards B with
velocity u at 45 degrees above AB, and the second from B towards A
with velocity v at 60 degrees above BA. If the particles collide
directly when each reaches its greatest height, find the ratio v? : u? and
prove that > = ga(3 — ,/3), where a is the distance 4B.
After the collision the first particle falls vertically. Show that the
coefficient of restitution between the particles is 3 - D//3 + 1)
JM.B.
35. A particle is projected with speed u from a point on a plane of
inclination « to the horizontal, motion taking place in a vertical
plane through a line of greatest slope. The maximum ranges up and
down the inclined plane are R, and R, respectively. Prove that R,
and R; are the roots of the equation in R

g2 R*cos? a — 2gu’R + u* = 0.
If R; is the maximum range on a horizontal plane, prove that

2 _1 1
Ry, R, "R, ’ (London)

36. A particle is projected upwards with speed V from a point A
on an inclined plane. Its plane of projection meets the inclined plane
in a line of greatest slope and its angle of projection (to the plane) is
tan”' (3). If it meets the plane at right angles, find the angle of
inclination of the plane. Show that the second point of impact is
4./2V¥(1 — €*)/10g from A.

37. A particle is projected upwards with speed V from a point 4
on a smooth plane inclined at an angle o. Its plane of projection
meets the inclined plane in a line of greatest slope and its angle
of projection, measured to the plane is 6. If the particle strikes
the plane at P when moving horizontally, show that
tan § = tan a/(1 + 2tan? o). If the coefficient of restitution is ¢ and
it rebounds and strikes the plane again at Q, find PQ.
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38. A particle is projected under gravity from a point P with speed
u at an angle of inclination 6 to the horizontal. Write down an
expression for r, its displacement from P after ¢ seconds in terms of i
and j, unit vectors horizontally and vertically.

Two particles 4 and B are projected from a point O each with a
speed u, but with different angles of projection 6 and ¢. State the
relation between 0 and ¢ and give expressions for their displacement
r, and rg from O after time r. Hence, find the distance between the
particles after time ¢ if 8 = 60 degrees.

39. Two particles P and Q are projected simultaneously out to sea
from the same point on the top of a high cliff and in the same vertical
plane. P is projected with velocity V,/3 at 60 degrees to the hori-
zontal and Q at 30 degrees to the horizontal. The particles remain
one vertically above the other till one of them strikes the sea. Find
the velocity of projection of Q and also the distance between the
particles when (a) Q is at its greatest height, (b) P is at its greatest
height, showing that one of these distances is three times the other.

(London)

40. A particle is projected from a point O on a plane inclined at an
angle a to the horizontal. The path of the particle lies in a vertical
plane meeting the inclined plane in a line of greatest slope. If the
particle returns to O after one bounce on the plane and 0 is the angle
the direction of projection makes with the plane, find the coefficient of
restitution e in terms of 6 and a.
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CIRCULAR MOTION

15.1. THE ACCELERATION OF A PARTICLE MOVING IN
A CIRCLE

WHEN a particle moves in a circle its direction is constantly changing.
Hence its velocity changes and it must have an acceleration.

Figure 15.1

Consider the particle at an instant when its speed is v, and let T, 4
be unit vectors along the tangent and radius respectively. (Refer to
Figure 15.1.)

Then the velocity v of the particle is given by

v=o0vT,
and differentiating with respect to time ¢
(dv/dt) = (dv/de)T + v(d T/de). e @)

But T is a unit vector. So d7/dr is a vector at right angles to T
directed towards the centre of the circle (refer to Section 3.7). Its
magnitude is the rate of rotation of T which is the same as w, the
angular speed of the particle. Hence dT /dt = wh and equation (i)
becomes

(dv/dt) = (dv/d0) T + voh.

That is, the acceleration of the particle has components dv/dt along
the tangent and vw along the radius towards the centre of the circle.
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For a particle moving in a circle v = wr, so this last component can
be written as v?/r or w?r and these are the more usual forms.

(dv/dt) = (dv/de)T + (v*/r)k
Example 1. A particle moves in a circle so that after t seconds its speed

is (2t* + 4m/s. The circle is of radius 9m. Find the resultant
acceleration of the particle after 1 second.

The tangential component of acceleration = dv/dt
= d(26* + 4)/dt
= 4t m/s>.

v /r

= (26> + 4*/9 m/s>.

When ¢t = 1, these components are each 4m/s®.. Hence the
acceleration of the particle is

4T + 44 m/s?,

The component towards the centre

which is a resultant acceleration of magnitude 4\/5 m/s2, in the
plane of the circle and inclined at 45 degrees to the radius to the
particle.

Example 2. A particle moves at constant speed in a circle of radius
10 m, completing 30 revolutions in one minute. Find its resultant
acceleration.
1 revolution per minute = 27n/60 radians per second
30 rev/min = 30 x 2n/60 rad/s

nrad/s.

]

This is the constant angular speed of the particle.
The tangential component of acceleration = dv/dt = 0,
since speed v is constant.
The normal component of acceleration = w’r
= 1210 m/s>.

Hence the resultant acceleration of the particle is towards the
centre of the circle and of magnitude 107* m/s?.
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Exercises 15a )

1. A particle moves in a circle of radius 3 m, so that after ¢ seconds
its speed is (5t + 1) m/s. Find its acceleration after 1 second.

2. A car moves at a constant speed of 45 km/h round a circular
bend of radius 200 m. Find its acceleration.

3. A particle moves in a circle of radius 1 m. What is its speed
when the component of its acceleration towards the centre is
4 cm/s?? ‘ ‘

4. Find the acceleration of a particle moving in a circle of radius
2 m with a constant angular speed of 5 radys.

5. Aflywheel rotates uniformly at 300 rev/min. Find the accelera-
tion of a point on the wheel 5 cm from the axle.

6. A stone on the end of a string 1 m long is made to describe
circles in a vertical plane. If, when the string is horizontal, its speed
is 21 m/s and is increasing at 9-8 m/s2, find the acceleration of the
stone.

7. A particle starts from rest and moves in a circle of radius r.
When the radius to the particle has turned through an angle 6, the
speed of the particle is krf. Show that its acceleration makes an
angle tan™ ! (1/6) with the radius (k is a constant).

8. A particle starts from rest and moves in a circle of radius r.
When the radius to the particle has turned through an angle 6, the
speed of the particle is given by V2 = 2kr sin 6 (k constant). Show
thatits acceleration is k(cos T + 2 sin 64)and deduce the magnitude
of this acceleration when 6 = 30 degrees.

9. A particle is projected with speed u so that it moves in a circle
of radius r. The forces acting on it are such that its acceleration is
always inclined at 45 degrees to the inward radius. Show that after
time ¢ its speed v is given by

v = (ur)/(r — ut)

15.2. FORCE AND MOTION IN A CIRCLE

Consider a particle of mass m moving in a circle of radius r at an
instantaneous speed v. Then we have seen that its acceleration is

dv v? . .
— T + —#&, where T, f are unit vectors along tangent and radius.
r

dt
Hence, since P = mf, the resultant force acting on the particle must
dv v? .
bem af + —#]. That is, it has components m dv/dt along the
r

tangent and mv?/r towards the centre of the circle.
Thus, if a particle is to move in a circle, the forces acting on it
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must vary so that the sum of their components towards the centre is
always mv?/r. The rate of change of speed round the circle will
depend on the tangential components of these forces.

We shall first consider cases when the speed is uniform.

15.3. UNIFORM MOTION IN A CIRCLE

If a particle moves in a circle at uniform speed, the tangential com-
ponent of force must be zero and hence the resultant force must be
towards the centre and of constant magnitude mv?/r.

Example 1. A particle of mass 1kg is attached to one end of a spring
of natural length 50 cm and modulus 80 N. The other end is fastened
to a point on a smooth horizontal table. If the particle is made to
describe circles on the table at 72 rev/min, find the extension of the
spring.

N
Tkg D(72x §—{,’) rad/s

‘ ‘ w

Figure 15.2

Let the extension of the spring be x (refer to Figure 15.2). The
modulus of the spring is 80 N and hence, by Hooke’s law, the
tension

T = Mx/l)
= 80(x/3)
= 160x N.

Since the particle is moving in a circle its acceleration towards the
centre

= @’r

I PP N E
=1%o/ \2
_ 1441:2(1N

2
T 2+x) m/s*.
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Since P = mf, towards the centre of the circle

14472 (1
160x = 1 x 2—:(5 x)
x(160 — 1447/25) = (144n2/25)1/2,
giving x = 02755m.

The extension of the spring is 27-6 cm.

Example 2. A particle of mass m is attached to one end of an inex-
tensible string, length 1, the other end of which is fastened to a fixed
point. The particle can be made to describe horizontal circles at a

uniform speed v with radius r. Show that v3./I* — r* = gr’.
A

s

T

Figure 15.3

Let the string be inclined at an angle 8 to the vertical (refer to
Figure 15.3).

Since the particle is moving uniformly in a circle its acceleration is.
towards the centre and of magnitude v?/r.

Since P = mf,
horizontally towards the centre
Tsin 0 = mv?/r ()
vertically Tcos —mg =0 ... (i)

Rearranging (ii) and dividing (i) by (ii), we have
tan 0 = v?/rg.
But from triangle ABC, tan @ = BC/AC = r/\/I* — r2.

r/ /12— r? = (v¥/rg),
or gr’ = v: /2 — r2,
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Exercises 15b

1. A car of mass 1 200 kg travels round a circular bend in the road
at a constant speed of 27 km/h. The radius of the circle is 100 m
and the road surface is horizontal. The driver turns the wheels of
the car to bring into play a frictional force which will make the car
go round the bend. What is the magnitude and direction of this
force?

2. A particle of mass m moves with uniform speed v in a straight
line. During its motion it passes a point O at a distance r from it.
Give details of the force needed to make the particle (continuing at
speed v) perform circles with O as centre.

3. One end of a light inextensible string, of length 50 cm, is
fastened to a point O on a smooth horizontal table. To the other end
a particle of mass 2 kg is attached which describes horizontal circles
on the table about O. The particle moves with a uniform speed of
8 m/s. Find the tension in the string.

4. A light inextensible string, of length 2 m, is fixed at one end and
carries a mass of 3 kg at the other. The mass is made to describe
horizontal circles at a uniform angular speed of 4 rad/s. Find the
tension in the string.

5. A smooth hemispherical bowl is fixed with its rim horizontal. A
particle of mass 90 g describes horizontal circles on the inside of the
bowl at 140 rev/min. If the internal radius of the bowl is 20 cm,
find the depth of these circles below the rim and determine the
reaction between the bowl and the particle.

6. A particle, of mass m, is attached to one end of an elastic
thread of natural length | and modulus A. The other end is fastened
to a point on a smooth horizontal surface. The particle describes
circles on the surface of radius I'(l’ > I). If w is the angular speed of
the particle, show that

, A1 1
@ m(l l’)'

7. A particle of mass 5 g describes horizontal circles on the end of
an elastic string of natural length 16 cm and modulus 40 g. N. If the
string is extended by 4 cm, find the inclination of the string to the
vertical and the speed with which the particle is rotating.

8. One end of a light inextensible string is attached to a point ata
height of 4 m above a smooth horizontal surface. To the other end is
attached a particle of mass 4 kg which describes circles of radius 3 m
on the surface with the string taut. If it moves at a speed of 6 m/s,
find the tension in the string and the reaction between the surface
and the particle.
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9. A light inextensible string of length 18 cm has its ends fastened
totwo points A and B. A s vertically above B and distant 12 cm from
it. A small smooth ring P is threaded on the string and is made to
perform circles at uniform speed with the string tight and BP
horizontal. Find the number of revolutions completed in one
minute.

10. A particle is placed on a rough horizontal rotating platform.
In what direction must the frictional reaction act if the particle is to
be carried round with the platform?

If the particle is distant r from the centre of rotation and the
coefficient of friction is g, find the maximum speed that can be given
to the particle without it slipping.

11. The Moon is attracted to the Earth by a force of magnitude
GMm/r?, where M and m are the masses of the Earth and Moon
respectively, and r is the distance between them. The Universal
Gravitational Constant G = 6:66 x 10~ '! m3/kgs2.

Assuming that the Moon moves with a uniform speed in a circle
around the Earth, completing one revolution in 27 days, and that the
distance between them is 384 000 km, estimate the mass of the
Earth.

15.4. MOTION IN A VERTICAL CIRCLE

Examples of motion in a vertical circle are: a ring sliding on a
vertical circular wire; a particle sliding down the outside of a
sphere ; the motion of the bob of a simple pendulum.

In each case the weight of the particle will, in general, have a
component along the tangent giving the particle an acceleration in
that direction. So we can apply P = mfalong the tangent, as well as
towards the centre, to obtain our information. However, rather
than resolve along the tangent, it is usually more convenient to
obtain a second equation from application of the Principle of Work.

Example 1. A small bead, of mass 2 g, is threaded on a smooth circular
wire fixed with its plane vertical. The bead is released from rest in a
position where the radius to the bead is horizontal. The radius of the
wire is 6 cm. Find the reaction between the bead and the wire when the
radius to the bead makes an angle of 60 degrees with the downward
vertical.

Let the particle be moving with speed v at the instant when the
radius to the bead makes an angle of 60 degrees to the vertical (refer
to Figure 15.4). Thensinceitis movinginacircle the component ofits
acceleration towards the centre will be ©2/0-06 m/s2.
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0-002 kg 0-002 g N
Figure 15.4
Since P = mf,
towards the centre N — 0-002g cos 60° = 0-002(v2/0-06).  ....(i)
Applying the principle of work between positions A and B,
Final K.E. — Initial K.E. = Work done
$0002)v* — 0 = 0-002g(0-06 cos 60°). ... (ii)

From (i) v> = 0-06g, and substituting this value of v? in equation
(i) gives

N — 0-001g = 0-002¢
N = 0-003g N.

The reaction between the bead and the wire in this position is
towards the centre and of magnitude 0-003g N.

Example 2. A particle of mass m hangs at rest on the end of an
inextensible string of lengthr. If the particle is projected horizontally
with speed u, find the tension in the string when it makes an angle 0 with
the downward vertical. Deduce that the particle will make complete
circles if u* > 5gr and indicate the positions of maximum and minimum
tension.

If u* = 3 gr, determine the value of 0 at the point where the string
goes slack.

Figure 15.5
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Consider the particle when the string is inclined at an angle 6 to
the vertical and it is moving with speed v (refer to Figure 15.5). Then,
since the particle is moving in a circle the component of acceleration
towards the centre is v?/r.

Since P = mf,

towards the centre, T — mgcos 0 = mv?/r ... ()

Applying the principle of work between positions 4 and B,
Final K.E. — Initial K.E. = Work done
Imv? — tmu? = —mgr(1 — cos ). .... (i)
From equation (ii) v> = u®> ~ 2gr(1 — cos 0) and substituting this
value in equation (i),
T — mgcos 0 = mu?/r — 2mg(1 — cos 0)
T = mu®/r — mg(2 — 3 cos 0) ....(a)

which is the required formula for the tension.
For the particle to perform complete circles, the string must not go

slack. That is,
T>=0 forallé.

ie. ul/r — g2 —3cosf) =0 forall,
or u* > gr(2 — 3cos6) for all 6.
Now the right-hand side of this inequality will be greatest when
= n and cos ® = —1. So the condition for performing complete
circles is )
u- = S5gr.

(Note that for a ring on a wire, say, the condition for complete circles
isthat the speed at the top is greater than zero. This is not a sufficient
condition for a particle on a string. The speed at the top in this
case must be still greater to ensure that the string remains taut.)

Inspection of equation (a) shows that the tension T is a maximum
when cos@ = 1, ie. when € = 0. And if the particle does make
complete circles then T is a minimum whencos8 = —1,0 = 5. So
the tension in the string is greatest at the bottom and least at the top.

If u> = 3 gr, then equation (a) becomes T = mg(1 + 3 cos §) and
the condition for complete circles is not satisfied. At the moment
when the string is about to go slack T =0

mg(l + 3cos0) =0
cosf = —3%
0 = 109° 28",
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The string goes slack, therefore, at the moment when it makes an
angle of 70° 32’ with the upward vertical.

Exercises 15¢

1. A small stone, of mass 0-1 kg, hangs from a fixed point on the
end of an inelastic string 0-2 m long. The stone is pulled to one side
and held so that the string is taut and horizontal. If the stone is
released from rest, find its speed and the tension in the string when
the particle has fallen a vertical distance of 0-1 m.

2. A light rod is pivoted at one end O and carries a particle of
mass 150 g at the other. The system is held at rest with the particle
vertically above O and released gently. Find the stress in the rod
when the rod makes an angle (a) 60 degrees (b) 120 degrees with the
upward vertical.

3. Alarge cylinder, smooth on the inside and of internal radius r,
is fixed with its axis horizontal. It contains a small particle lying
at rest on the bottom. The particle is projected horizontally at right
angles to the axis of the cylinder with speed u. Assuming that the
particle does not lose contact with the cylinder, show that when the
speed has been reduced to u/2, the angle 6 between the radius to the
particle and the downward vertical satisfies the relation

8gr(1 — cos ) = 3u?.

Find also an expression for the reaction between the particle and
cylinder in this position in terms of m, u and r (m being the mass of the
particle).

4. A particle is placed on the highest point of a fixed smooth
sphere and given a gentle push. Find the angle between the radius
to the particle and the upward vertical at the moment when the
particle begins to leave the surface of the sphere.

5. A small particle hanging on the end of a light inelastic string
2m long is projected horizontally. Calculate the least speed of
projection needed to ensure that the particle performs complete
circles.

If the speed of projection is 700 cm/s, find the position of the
particle when the string goes slack.

6. A simple pendulum consists of a particle of mass 5 kg hanging
on a string of length 10 m. If the particle is pulled aside so that the
string makes an angle of 60 degrees with the downward vertical,
and is released from rest, find the speed acquired and the tension in
the string when it makes an angle cos™ ! (§) with the downward
vertical.
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If the breaking strain of the string is 150 N, is there any danger
of the string breaking in the subsequent motion?

7. A smooth circular wire, of radius a, is fixed with its plane
vertical. A small ring, threaded on it, is projected with speed u from
its lowest point. Show that the ring will describe complete circles if
u? > 4ga.

If u? = 2ga, find the greatest height reached by the particle and,
for a ring of mass m, the reaction between the ring and wire at that
point.

8. A smooth cylinder of radius r is fixed with its axis horizontal.
Two particles of mass m and 3m are connected by a light inelastic
string and the system is hung over the cylinder with the string at
right angles to the axis of the cylinder. The string is in contact with
the cylinder and subtends an angle 26 at its centre. Initially the
particles are symmetrically placed on either side of the vertical and
are released from rest. Find the speed acquired by the mass m when
it reaches the top of the cylinder and find the reaction between the
mass m and the cylinder in this position.

EXERCISES 15*

1. In an experiment to measure the ratio of charge (e) to mass (m) of
an electron, a beam of electrons is passed through a magnetic field.
The field is arranged so that it exerts a force on each electron which is
always at right angles to its path and which can be adjusted so that
the beam is deflected into a circular path whose radius r is measured.

If v is the speed of an electron and H the field strength, then the
force exerted on the electron is Hev. Find a formula expressing e/m
in terms of H, v and r.

2. A small ring can slide on a smooth circular wire fixed with its
plane vertical. If the ring is released from the highest point on the
wire, find the direction of its acceleration when it is on a level with the
centre of the circle.

3. A small stone describes horizontal circles with angular speed w
on the end of a light inelastic string. If the depth of the circles below
the point of suspension is h, find a formula expressing # in terms of w.

Is it possible to whirl the stone round with the string horizontal?

4. A particle of mass 5 kg describes vertical circles on the end of a
string 0-5m long. The breaking strain of the string is 89 N. If the
string breaks when the particle is in its lowest position, what is its
speed at that instant?

* Exercises marked thus, 1, have been metricized, see Preface.
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5. A spring of natural length ! has one end fastened to a smooth
horizontal table. The other end is attached to a particle which
describes circles on the table. When the particle moves with speed v
the extension of the spring is x. If when the particle is suspended
vertically on the spring its extension is e, show that

ev? = gx(I + x).

6. Inside a van a simple pendulum is hung from the roof. When
the van rounds a bend at 54 km/h the pendulum makes an angle of
20 degrees with the vertical. Find the radius of the bend.

7. A particle describes vertical circles on the end of a light
inelastic string 20 cm long. The ratio between the maximum and
minimum tensionsis 2: 1. Find the speed of the particle at its highest
point.

8. A right circular cone of semi-angle 60 degrees is fixed with its
axis vertical and its vertex downwards. A small particle performs
circles on the inside of the cone at a constant speed of 70 cm/s. Find
the distance of the particle from the vertex.

9. Two particles, of mass 2m and m respectively, are connected
by a light inextensible string of length a. The string passes through a
fixed smooth ring and, while the 2m mass hangs in equilibrium a
distance x below the ring, the other mass describes horizontal circles
with angular velocity w. Find the inclination of the moving string to
the vertical, and show that

w*a — x) = 2g.

10. A particle is projected from the top of a smooth sphere of
radius aso that it slides down the outside of the sphere. Ifthe particle
leaves the sphere when it has fallen a distance }a, find the speed with
which it was projected.

What will be its speed when it has fallen to the level of the centre of
the sphere?

11. A light inextensible string of length 30 cm has one end fixed
to a point A on a smooth vertical rod. To the other end a particle
P of mass 20 gisattached. A second similar string(again 30 cm long)
is attached to P and carries a small 30 g ring which slides on the rod.
If P is made to describe horizontal circles at a speed of 420 cm/s,
find the inclination of AP to the vertical.

12. A is a point on a smooth horizontal surface, B a point 1 m
vertically above it. A light inelastic string of length 2 m has its
ends fastened to A and B and carries a smooth small bead P of mass
1 kg threaded on it. If P is made to describe circles, centre A, on the
surface at an angular speed of 8 rad/s, find the tension in the string.
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13. A particle P, lying on a smooth horizontal table, is connected
to an identical particle Q by a light inextensible string. The string
passes through a smooth hole in the table so that Q hangs freely. Pis
made to describe circles of radius 0-2 m on the table with speed u.
Find u if (a) Q hangs at rest, (b) Q is made to perform circles with its
portion of the string inclined at 60 degrees to the vertical.

In case (b), if the string is of length 0-4 m, find the angular speed
with which Q is rotating.

14. A particle is attached to a fixed point by a light elastic string of
natural length 20 cm and modulus twice the weight of the particle. If
the particle is made to perform horizontal circles with angular speed
w show that @ must be greater than %\/6 rad/s.

If w = 7rad/s, find the radius of the circle in which the particle
moves.

15. A particle of mass m describes complete circles in a vertical
plane on the end of a light inextensible string. If the speed at the
lowest point is twice the speed at the highest point, find the greatest
and least tensions in the string.

Find also the height of the particle above the lowest point when
the tension is % mg, the length of the string being 2a.

16. A hemispherical bowl of radius 10 cm rotates uniformly about
its axis which is vertical. A particle on the rough interior rotates
with it in a position such that the radius to the particle makes an
angle of 60 degrees with the vertical. If the coefficient of friction
between particle and bowl is 1/2 and the particle is about to slip
upwards, find the rate of rotation of the bowl in revolutions per
minute.

17. A bead of mass m is threaded on a smooth circular wire of
radius a fixed in a vertical plane. A light inextensible string attached
to the bead passes through a smooth ring fixed at the centre of the
wire and supports a particle of mass M hanging freely. The bead is
projected with speed \/ (kga) from the lowest point of the wire. Find
the least value of k for the bead to reach the top of the wire.

Taking k = 6, show that the reaction between the bead and the
wire vanishes at some point of the motion if M lies between m and 7m.

(London)

18. A particle moves with constant speed v in a circle of radius r.
Show that the acceleration of the particle is v?/r directed towards the
centre of the circle.

A rough horizontal plate rotates with constant angular velocity @
about a fixed vertical axis. A particle of mass m lies on the plate at a
distance 5a/4 from this axis. If the coefficient of friction between the
plate and the particle is § and the particle remains at rest relative to
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< [2)

The particle is now connected to the axis by a horizontal light
elastic string, of natural length a and modulus 3mg. If the particle
remains at rest relative to the plate and at a distance 5a/4 from the
axis, show that the greatest possible angular velocity of the plate is

13g

15a
and find the least possible angular velocity. (J.M.B.)
19. A light inextensible string ABC of length 5 ft has a particle of
mass m attached at B, where AB = 2 ft. Aringofmass3misattached
at C. The end 4 is fixed and the ring at C is free to move on a

smooth vertical wire passing through A. The system rotates with
constant angular velocity w about the wire, with C below 4. If the

angle BAC = 60 degrees, show that w? = g(4 + ./3/2) and find the
reaction between the ring and the wire. (London)

20. A, B and C are three points in order in a vertical straight line
with A as the lowest point, AB = 2a and BC = 4a. A thin smooth
wire ADBEC passes through the three points and lies in one plane.
ADB is a semi-circle on AB as diameter and BEC is a semi-circle on
BC as diameter, D and E being on opposite sides of ABC. A small
bead is threaded on the wire and is projected from A with speed
/(5ag). Show that the reaction between the wire and the bead equals
the weight of the particle at three points on the wire and find the
heights of these points above A. (WJE.C)

21. A parcelrests on the horizontal back seat of a car, its coefficient
of friction with the seat being 3/4. The car when travelling on a
level road at 54 km/h is brought to rest by a uniform application
of the brakes. Show that the parcel will not slide forwards on the
seat if the stopping distance is more than about 15.3 m.

The car later rounds a circular bend on the road at a steady speed
of 54 km/h. Show that the parcel will shift towards the side of the
car if the radius of the bend is less than about 30-6 m.  (London)t

22. A particle of mass 1 kgisattached to one end of a light inelastic
string of length 0-5 m, the other end of which is attached to a fixed
point 0. The particle is held at a point on the same horizontal level as
O and 0.4m from it and is then released. Find the impulsive tension
in the string when the string becomes taut.

If the string can sustain this impulsive tension find the speed of the
particle and the tension of the string at the moment when the particle
is vertically below O. {(London)t

the plate, show that

296



EXERCISES

23. A heavy particle is attached to a fixed point O by a light
inextensible string of length a. When the particle is at rest vertically
below O itis given a horizontal velocity u. In the ensuing motion the
string becomes slack and then subsequently becomes taut again at
the instant when it is horizontal. Prove that u? = ga(2 + 3./3).

(Oxford)

24. A particle slides from rest at a point at an angular distance a
from the highest point of a fixed smooth sphere of radius r. Show
that while the particle is still in contact with the sphere the reaction
between them is mg(3cos @ — 2cosa), where 6 is the angular
distance of the particle from the highest point of the sphere. If
cosa = 3, show that the particle will leave the sphere when its
angular distance from the highest point is 60 degrees. Show also that,
in the ensuing motion, when the particle is at a distance r,/3 from
the vertical diameter of the sphere its depth below the centre of the
sphere is 4r. (JM.B)

25. A small bead P of mass m is threaded on a thin smooth wire
~ bent into the shape of a circle of radius a fixed in a vertical plane.
The lowest point of the circle is 4. The bead is acted on by gravity
and also by a force along the chord PA of magnitude mg/a times the
length of the chord. Show that the motion of the particle is the same
as if gravity alone were acting, but with g increased to 2g.

If the particle is describing complete circles and its reaction on
the wire at the top of the circle is outwards and one half its reaction
on the wire at 4, show that the speed ¥V of the particle at A4 is given
by V? = 23ag. (WJ.E.C)

26. A particle of mass m, suspended from a point O by an inexten-
sible string of length I, is projected horizontally from its lowest
position with a speed ,/(2gh). Find the greatest tension in the string.

If the string becomes slack during the subsequent motion, show
(a) that h > I, (b) that slackness first occurs when the particle is at a
point A which is higher than O by #(h — I),(c) that the greatest height
above A attained by the particle in the subsequent motion is (h — )
(I + 2n)(51 — 2h)/27l2 (J.M.B)

27. A particle P is attached to two fixed points A and B in the
same horizontal line by means of two light inextensible strings. 1t
is projected with a velocity just sufficient to make it describe a circle
in a vertical plane without the strings becoming slack, the angle
PAB being «. When the particle is at its lowest point, the string BP
breaks and the particle then describes a circle in a horizontal plane.
Prove that cot & = /5. (Oxford)

28. One end of a light inelastic string of length a is attached to a
fixed point O and the other end is attached to a particle P of mass
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m. P is held with the string taut and horizontal and is then released.
When the string becomes vertical it begins to wrap itself around a
small smooth peg A4 at a depth b below O. Find the tension in the
string when AP subsequently makes an angle 6 with the downward
vertical and show that the particle makes complete revolutions
about 4 if b > 3a. (WJE.C)

29. A particle, of mass m, is suspended at one end B of a light
inextensible string AB, of length 2a, the other end of which is fixed.
The particle is drawn aside, the string being taut, until AB makes
an angle cos ! (}) with the downward vertical through A and the
particle is then released from rest. When B has risen to a height such
that AB makes an angle 45 degrees with the downward vertical, the
mid-point of the string comes into contact with a small fixed
horizontal peg C.

Determine (a) the speed of the particle at the moment the string
first touches the peg, (b) the tension in the string at the moment when
part of it is horizontal. (London)

30. A particle lies at rest on the smooth interior of a sphere of
internal radius a. What is the least speed with which it must be
projected horizontally to describe complete circles on the inside of
the sphere?

If it is projected with speed ./4ga, find the greatest height (above
the base of the sphere) reached in the subsequent motion.
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PART II—RIGID BODIES

A rigid body is one whose size and shape are, for all practical
purposes, invariable. It will be regarded as a collection of particles
very close together such that the distance between any two of them
is invariable. For certain purposes however, e.g. finding centres of
gravity, a rigid body will be treated as if it were a continuous
distribution of matter.
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16
MOTION OF A SYSTEM OF PARTICLES

16.1. CENTRE OF MASS

Definition—The centre of mass of a system of n.particles, of masses
my,my,my,...,m,, at points whose position vectors are
ri,ty,F3,...,F, respectively, is the point whose position vector r
is given by ‘

_ m1r1+m2r2+m3r3+"'+mnr"
y =
my +my; +my+---+m,
ie. F=Zmr/Zm.

Its position is independent of the origin chosen which can be shown
as follows:

Suppose its position is not independent of the origin and let G, G’
be the centres of mass of a given system referred to origins 0, 0’
respectively. Then 0G = Zmr/Zm and 0G' = Zmr' /Zm, where r, v’

Figure 16.1

are the position vectors relative to 0,,0" respectively, of a typical
member of _the system. Then if 0’0 = a (say), it follows that
0G=a+0Gandr =a + r (refer to Figure 16.1). By definition

0G =Imr /Zm
= XImla + r)/Em
= (aZm/Zm) + (Zmr/Zm)

=a+ 06
0G =06

301



MOTION OF A SYSTEM OF PARTICLES

i.e. G’ and G have the same position vector relative to O’ and are
therefore the same point and the position of the centre of mass is
independent of origin.

It will be shown later that the centre of mass coincides with the
point through which the total weight of the system acts—its centre
of gravity.

Example. Masses of 1,2, 5 and 2 kg lie in the plane XOY at points
whose coordinates are (0,1), (0, — 1), (1, 2) and (2, 2) respectively.
Find the coordinates of their centre of mass.

Y

2 ;Skg ;Zkg
xG (%,7)

14 kg

J

__
0 T T X

1 2
-142kg
Figure 16.2

Taking unit vectors i, j parallel to OX, OY respectively (refer to
Figure 16.2), the position vector of a point (x, y) will be xi + yj.
Then, from our definition, the position vector of the centre of mass
will be given by

F=ZXZmr/Zm
CAG) + 20— + 56+ 2) + 2Qi + 2))
B 1+2+54+2

(9i + 13j)/10.

=+ and y=14.

xXi + jj

The centre of mass of the system is at the point (75, 13)-
Exercises 16a

1. Four particles of mass 2m, m, m and 2m are placed at points
whose position vectors are a, 2a, b and 2b respectively. Find the
position vector of their centre of mass.
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MOTION OF THE CENTRE OF MASS

2. Three particles of masses 1, 2 and 3 kg are situated at points
whose position vectors are —i+ 2j + k, 2i + 3k and i — 2j + k
respectively. Find the position vector of their centre of mass.

3. Four particles of masses 2, 2, 1 and 1 g are placed in a plane
at the points whose cartesian coordinates are (0, 3a), (2a, 3a),
(2a, 0), and (0, 0) respectively. Find the coordinates of their centre
of mass.

If the masses of all four particles were doubled, what effect would
this have on the position of their centre of mass?

4. Show that the centre of mass of three equal particles at the
vertices of a triangle is at the intersection of the medians of the
triangle.

5. Asystem of particles is in motion. A typical particle has massm
and position vector r, where r is a vector function of time ¢t. Find a
formula for the velocity of their centre of mass.

A bolas consists of three equal balls, each of mass m, connected
by three light inextensible strings to the same point. The bolas is
thrown so that the three balls always lie in the same horizontal plane.
At a given instant the balls have velocities 40i + 605, 125 + 3j,
—6i + 75/ units respectively, where i and j are perpendicular
horizontal unit vectors. Find the velocity of the centre of mass of
the bolas at this instant.

6. A typical particle of a moving system has mass m and velocity v’
relative to the centre of mass. Show that Tmy' =0.

16.2. MOTION OF THE CENTRE OF MASS

Consider again a set of particles such that a typical particle of mass m
is instantaneously at a point whose position vector is r. Let the
resultant force on this particle be P, so that

P = md>?r/di>
Adding vectorially for all such particles,
TP = X(md?r/dt?) 1)

But if Fis the position vector of the centre of mass of the system
FIm = Xmr, and differentiating twice with respect to time

2z 2
%Em = Z(m%) ... (1)
Combining (i) and (ii)
P = ﬁZm (iii)
de? T
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MOTION OF A SYSTEM OF PARTICLES

Thus the vector sum of all the forces acting on the particles is equal
to the product of the total mass and the acceleration of their centre
of mass.

Now any internal forces between the masses (attractions, repul-
sions, tensions in strings, reactions etc.) will, by Newton’s third law,
occur in equal and opposite pairs. Hence only external forces will
contribute to this vector sum LP, and equation (iii) expresses the
important result that the centre of mass of a system of particles moves
as if it were a particle of mass Im acted upon by all the external
Jorces exerted on the system.

Note that this justifies our earlier treatment of cars, engines,
boxes etc. as if they were particles.

Example. A rigid framework of light rods forms a square ABCD.
Masses of 1, 3, 2 and 4kg are fastened to ABCD respectively, and
the framework lies on a smooth horizontal surface. A force of 5\/5 N

acts at A along AC, 6 N at B along BC, 6\/5 N at C along CA and
6 N at D along DA. Find the magnitude and direction of the accelera-
tion of the centre of mass of the framework.

5 /2N

_[645¢ f
]
|

kg 3kg

D $4k 2kg

k6 N LN

Figure 16.3

If ZP = 0, this gives d(Zmvp)/dt = O and hence Z(mv) = const.

Reactions between the particles and the horizontal surface will
arise so that the weights are counterbalanced and the vector sum of
vertical forces is zero (and the vector sum of the internal stresses in
the ﬁ)’ds will_a}so be zero). Hence, taking i, j as unit vectors parallel
to DC and DA (refer to Figure 16.3), the vector sum of all the forces
acting on the system is

TP = (5 — 5) — 6 + (—6i + ) + 6j
=—i+jN
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MOTION OF THE CENTRE OF MASS
The total mass Zm = 10kg.
Since TP = (d*F/dt)Em
) —i + j = (d*#/dr?)10
d?F/dt? = &(j — P m/s>.

The centre of mass of the framework has an acceleration of magnitude

1—5\[ m/s? in ah horizontal direction making an angle of 45 degrees
with CD and DA.

The acceleration of the centre of mass is clearly not affected by
the lines of action of the forces nor by the distribution of the masses.
Their motion around the centre of mass will, however depend on
these factors as will be seen later.

Conservation of momentum—Equation (i) at the beginning of
this section can be stated in the form

ZP = X(d(mv)/dt)

or IP = d(Zmv)dt.

If ZP = 0, this gives d(Xmv)/dt = O and hence X(mp) = const.

This is the principle of conservation of linear momentum that
if the vector sum of the external forces acting on a system is zero,
its total momentum remains constant. Considerable use of this
principle has been made in Chapter 13 (refer to Section 13.4 et seq).

Exercises 16b

1. Three forces F,, F,, F3 act on a system of particles of total
mass2kg. IfF,=2i—3j+kF,=i+4j—kandF,= —i + jN
find the acceleration they impart to the centre of mass.

2. Three particles are rigidly connected by light rods to form an
equilateral triangle ABC. Particle A is a 5g mass, B an 11 g mass
and C a 9 g mass. The system lies at rest on a smooth horizontal
table. If a force of 4 N is applied at A along AB and a force of 3N
at B perpendicular to AB (towards C), find the acceleration given
to the centre of mass.

What would this acceleration have been if both forces had been
applied at the mid-point of AB?

3. Two particles each of mass m lie at rest at points 4, B on a
smooth horizontal surface. A force of magnitude k mg is applied
to Ain a direction making an angle o« with AB. Find the acceleration
of the particle at A, and of the centre of mass of the system consisting
of the two particles.
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MOTION OF A SYSTEM OF PARTICLES

Would these accelerations have been the same if 4 and B had
been connected by a light rod?

4. A man finds himself standing on very smooth ice unable to
move. Use the principle of conservation of momentum to explain
how he can set himself in motion by throwing away a cigarette
packet.

5. A shell explodes into four pieces of masses 10, 50, 70 and 30 kg
moving with velocities 67 + 16 + 27k,20i + j — 30k, 14i — 3j + 17k
and —68i — 26k m/s respectively. Find the original velocity of the
shell. What is the velocity of the centre of mass after the explosion?

16.3. MOTION ABOUT A FIXED POINT

We shall begin by discussing the moment of a force (or torque) and
the moment of momentum (or angular momentum) of a system of
particles.

As defined in Section 3.10, the moment of a force F about a
point O is r x F, where r is the position vector relative to O of a
point on its line of action. This is also sometimes called the torque
about 0.

Again as in Section 3.10 4. (r x F) is the moment of F about an
axis parallel to d and through O.

ST unit of torque... N m.

Similarly, the moment of momentum of a particle about O is
r x mp, where m is its mass, v its velocity and r the position vector
relative to O of a point on the line of action of ». This is also called
the angular momentum of the particle about O.

d.(r x mv) is the angular momentum of the particle about an
axis through O parallel to 4.

SI unit of angular momentum. .. kg m?/s.
A useful expression for the angular momentum of a particle can
be obtained as follows:

O x
Figure 16.4

Let P be the particle whose angular momentum about O we are
considering (refer to Figure 16.4), and let @ be the instantaneous
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MOTION ABOUT A FIXED POINT

rate of rotation of OP. Also let S be a unit vector in the plane of r
and v perpendicular to r. Then

dr dr

== dtf + roS (refer to Appendix).

v

rxmv:rxm(g—:f‘-krwg)

r x mp = mrimg

where § is a unit vector such that #,$, § form a mutually perpendicular
right-handed set. Thus the magnitude of the angular momentum of
a particle about O depends on the mass of the particle, its distance
from O and its angular speed around O.

The angular momentum of a system of particles is defined as
the vector sum of their individual angular momenta, i.e. Z(r x mv).

We shall now obtain a relation between torque and rate of change
of angular momentum for a system of particles analogous to the
relation (P = d(mwv)/dt) between force and rate of change of
momentum for a particle.

Consider a system of particles such that a typical particle has
mass m, position vector r with respect to a fixed point 0, and velocity
v. Then if the resultant force on the particle is P,

P = d(mv)/dt.

Forming the vector product of both sides of this equation with r,
r x P=r x dimv)/dt

. d
r x P =d(r x mp)/de.* 51nced—;xv=vxv=0.

Adding vectorially for all such particles,
X(r x Py = Z[d(r x mv)/dt]
3(r x P) = d(Z[r x mv])ydt. ...Q)

Now the internal forces (if any) occur in equal and opposite pairs
in the same line. Hence the sum of their moments about any point
is zero. Thus equation (i) states that:

The sum of the moments of the external forces about a fixed point O,
is equal to the rate of change of angular momentum about O.

* Since, as we have seen, r x mw is linked with the angular speed of the particle,
the above equation shows that its angular acceleration depends on the moment of P.

This gives some justification for regarding the moment of a force as its “‘turning
effect”.
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MOTION OF A é?STEM OF PARTICLES

A similar relation can be obtained for moments about an axis.
Form the scalar product of both sides of equation (i) with 4. Then

d.X(r x P)=d.d(ZE[r x mv])/dt
X[d.(r x P)] = d(Z[d.r x my])/dt.

i.e. the sum of the moments of the external forces about a fixed axis
is equal to the rate of change of angular momentum about that axis.

If the sum of the moments of the external forces is zero, it follows
that the angular momentum of the system remains constant. This is
the principle of conservation of angular momentum.

Exercises 16¢ .

1. The line of action of a force 2i — j + k N passes through the
point whose position vector is i + j metres, and the line of action
of a forcei + 2j + k N passes through the point j + & metres. Find
the vector sum of the moments of these two forces about the point
I + j + k metres.

2. ABCDEF is a regular hexagon of side a. Forces of magnitude
1,2, 3,4 and 2 units act along AB, BC, DC, DE and DB respectively.
Find the sum of their moments about an axis through the centre of
the hexagon perpendicular to its plane.

3. Three particles 4, B, C are each of mass 3kg. At a certain
instant A is at the point with position vector 2i + j — kK m moving
with speed 3i — 2j + 4km/s. B is at 4/ + j — 2k m moving at
3i + km/s and C at 2i + k m moving at 3i — j + km/s. Find the
angular momentum of the system about the origin.

4. A light rod AB has a particle of mass m attached at A and
another at B. The rod is made to rotate with uniform angular
speed w about an axis through C, a point which divides 4 B internally
in the ratio of 1:2. If AB = 3a, find the angular momentum of the
system about the axis of rotation.

What can be deduced about the moments of the external forces
acting on this system?

S. Two particles A4, B, each of mass 2 units are at rest at a point O.
Variable forces F, , F, are applied to A, B respectively, such that
after time t,F, = 4ti + 2j and F, = 4i + 44§ — 2tk units. Find the
velocity and displacement from O of each particle at time ¢.

Find also the angular momentum of the system at this time and
verify that the sum of the moments of the forces is equal to the rate
of change of momentum.

6. A thin uniform lamina rotates in its own plane about a point O
in the lamina which is fixed. Show that its angular momentum at
any instant has magnitude kw, where k is a constant and w is the
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MOTION RELATIVE TO THE CENTRE OF MASS

instantaneous rate of rotation. Hence, show that its angular
acceleration is directly proportional to the magnitude of the torque
of the external forces about O.

7. A wheel, rotating freely about its axis, is brought to rest in
time T by the application of two brake blocks to its surface. These
blocks produce constant forces of magnitude F acting tangentially
to the rim of the wheel. If the disc is of radius a, find the initial
angular momentum of the wheel about its axle.

8. A top consists of a flat disc spinning uniformly about a fixed
vertical axis. A rough ring is lowered gently on to the disc and
released so that the two rotate together about the same axis. Discuss
any changes that take place in (a) the angular momentum of the
combined system (b) the angular velocity of the top.

16.4. MOTION RELATIVE TO THE CENTRE OF MASS

Consider a system of particles whose centre of mass G has position
vector F relative to a fixed point O; and let a typical particle have
position vectors r, ¥’ relative to O, G respectively. (Refer to Figure
16.5)) Then from triangle OQG, r = 7 + r'.

Figure 16.5
Now, from the result obtained in the previous section,
d
Z(r x P) = —(Z[r x mv))
dt
d - a
Z(F+r)x P]= 5(2[& + ) x mv))

Z(Fx P)+ Z(r x P) = %(E[F x mv}) + %(Z[r’ X mv])

d(mw) + i
dt de

FXZP+X(r¥ X PP=Fx X (Z[r x mv)).
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MOTION OF A SYSTEM OF PARTICLES

But sp = x4
dt
(refer to Section 16.2)
d
so that FxZP=¥F¥x X ((rir;v)

(r x P) = %(Z[r’ x mv]).

Again internal forces ““cancel out” and this equation (similar to
equation (i) of Section 16.3) states that the sum of the moments of the
external forces about the centre of mass is equal to the rate of change
of angular momentum about the centre of mass.

From the scalar product of both sides of our equation with 4,
we can show that

Td.( x P)) =dZE[4.r x mv])/dt.

Thus a similar relationship holds between moments about an axis
through G and angular momentum about that axis.

The kinetic energy of a system of particles may be expressed as
the sum of the K.E. of a particle of mass ¥m moving with G and
the K.E. of the system relative to G.

Forsincer =% + v, thenv =7 + v'.

The total K.E. = (3mv?)
= Z(m[v + v']%)
= ZEmv?) + Z(mv. v) + Z(Emv'?)
=iPZm + 7. Z(my) + Z(Gmv'?).
But X(mv’) = 0, since Z(mv')/Zm = v = 0.
Total K.E. = 1#?Zm + T(Gmv?).

Summary
In this chapter three important relationships have been obtained :
TP = (d*P)/(dt>)=m @)
and Z(r x P) = dXZ(r x mrv)/dt ....(ua)
or 3(r x P) = dZ(r x mv)/dt ....(iib)

(these last two relationships being also true for moments about
an axis).
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Hence the motion of a system of particles depends on the vector
sum of the external forces, and on the sum of their moments about
a fixed point (or about the centre of mass). Indeed, the motion of a
rigid body, whose particles are fixed relative to one another, is
determined by these quantities.

In the succeeding chapters we shall make extensive use of these
relations ; sometimes taking moments about a fixed point (Chapters
17 and 21), sometimes about a fixed axis (Chapter 19)and sometimes
about an axis through the centre of mass (Chapter 20).

EXERCISES 16

1. Seven equal masses are placed one at each of seven corners of a
cube of side 2a. Find the position of their centre of mass relative
to the eighth corner O.

2. The point with position vector R, is the centre of mass of a
set of particles each of mass m, while the point with position vector R,
is the centre of mass of a second set of particles each of mass im.
Show that the centre of mass of the combined set has position vector

AR, + R,
1+4

3. Two particles of masses 3kg and 2 kg are moving so that at
time ¢ their velocities are td and 2:2b m/s respectively, d, b being
constant unit vectors. Find the velocity of their centre of mass at
time ¢ and deduce the vector sum of the forces acting on them when
t = 2 seconds.

4. A shower of n particles of masses m, 2m, 3m,...,nmis falling
vertically under gravity. A horizontal cross wind exerts on each one
a force of magnitude i(mass)?>. Find the horizontal and vertical
components of the acceleration of their centre of mass. (Neglect
air resistance.)

5. A moving particle P collides with and scatters a collection of
three equal particles. After the collision, the first particle is brought
to rest and the other three have velocities — 27 + J» 4 + 2j and
i — 5/ m/s respectively. Find the velocity of the centre of mass of
the four particles immediately after the collision. If each of the
three particles has a mass of 1 kg, determine the momentum of the
first particle just before the collision.

6. A particle slides down the smooth face of a wedge which is
itself free to move on a smooth horizontal surface. Without con-
sidering the forces between the particle and the wedge, show that
the wedge must move.
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MOTION OF A SYSTEM OF PARTICLES

Would this still be true if the face of the wedge in contact with
the particle were rough.

7. Three particles of equal mass have position vectors
(5 + 30i + (2 — 5t)j,(— 46 + 20jand (1 + i + (7 + 3r)jat time ¢.
Find the position of their centre of mass. Deduce the total linear
momentum of the system.

Is the angular momentum of the system constant?

8. Two particles of masses 3 kg and 2 kg move so that at time ¢
their displacements from a fixed point O are 2i + 44y and
(1> — 2)i 4+ 4tj metres respectively. At the instant when t = 5s find
(a) the velocity of their centre of mass, (b) the angular momentum
of the system (c) the vector sum of the forces acting on them (d) the
vector sum of the moments of these forces about O.

9. A particle of mass m moving in a plane has coordinates (x, y)
at timet. Show that its angular momentum A about a perpendicular
axis through the origin is given by

10. A cylinder of radius 0-1 m is free to rotate about its axis.
A long string is wrapped round the cylinder and then pulled to
make it rotate (the string does not slip). The cylinder starts from
rest and the force in the string has the value (3 + 2¢) N after ¢ seconds.
Find the angular momentum about its axis, acquired by the cylinder
in 2 seconds.

11. A top consists of a uniform disc spinning about a vertical axis.
The top of the disc is rough. If a particle is gently dropped on the
disc and carried round with it, how does this affect the angular
speed of the top?

Does the change in angular speed depend on the distance of the
particle from the axis?

12. A sphere rolls without slipping down an inclined plane. By
considering its angular momentum about an axis through its centre
of mass, show that it cannot move at uniform speed.

13. Three particles each of mass m have velocities 7i + 12j,
—3i + 6j,2i — 3jcm/s respectively. Find the velocity of their mass
centre G.

Hence find the velocities of the particles relative to G and verify
that the total kinetic energy of the system is equal to that of a particle
of mass 3m with the velocity of G together with the sum of the
kinetic energies of the three particles relative to G.

14. Three particles, each of mass m, are attached to points 4, B, C
on a light rod of length 2a. A4 and C are the ends of the rod and B
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the mid-point. The rod moves so that B has a uniform speed v and
the rod rotates about B with angular speed w. Find (a) the kinetic
energy of the system (b) the angular momentum of the system about
B.

What can be said about the forces acting on the system?

15. Atopis spinning about a vertical axis on a smooth horizontal
surface. A tangential horizontal frictional force is applied to its rim.
What effect does this have on the top?

16. The velocity of the mass-centre of two particles, of masses
my, m,, moving in the same straight line is V and their relative
velocity is V'; prove that the total kinetic energy of the two particles
is

IMVZ + IMV2
where M=m +m, and MM = mym,.

A shell of mass M, travelling with velocity V, is broken into two
fragments of masses m,, m, by an explosion which increases the
kinetic energy by an amount E. Show that, if the two fragments
initially move in the same line as the shell, their smallest relative
velocity occurs when their masses are equal. (WIJ.E.C)
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17
EQUIVALENT SYSTEMS OF FORCES

17.1. MEANING OF EQUIVALENCE

WE have seen, in the previous chapter, that the motion of a rigid
body depends on the vector sum of the external forces acting on it,
and on the vector sum of their moments. Accordingly we take
two sets of localized forces P, P,,P5... and Q,0Q,,0;... to be
equivalent if

P =320
and (r x P)=Z%(s x Q)

where r, s are the position vectors of points on the lines of action
of P, Q respectively, relative to some fixed point.

Example. The lines of action of two forces F, =i+ j—k, F, = j
units pass through the points (0,0, 1) and (1, 1, 1) respectively. Find
the force, P which, together with a force i + junits through the origin,
forms a system equivalent to F, and F,. Find also the point in which
the line of action of P cuts the plane z = 0.

Equating the vector sums of the two systems,
itj—k+j=>GE+)H+P
P=j—k

Let the line of action of P cut the plane z = 0 at the point (a, b, O).
Then taking moments about the origin.

O+ (@ +b)x(j—K=kxG+j—Kk+G+j+k xj
ak + aj — bi =(j — i) + (k — i)
—bi+aj +ak=—2+j+Kk

givingh =2anda = L
P is a force j — k units passing through the point (1, 2, 0).
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COUPLES
17.2. COUPLES

A system of forces of particular interest consists of two forces equal
in magnitude, opposite in direction and not in the same straight line.
(Refer to Figure 17.1.) Such a system is called a couple.

Figure 17.1

Since the vector sum of the two forces is zero, a couple can have no
effect on the motion of the centre of mass of a body. However, the
sum of the moments of the two forces cannot be zero so there will
always be a turning effect.

A couple has the important property that the sum of the moments
of the two forces is the same about all points. To prove thislet A4, Bbe
points on the line of action of the two forces, and ry, r, respectively
their position vectors with respect to some origin O (refer to Figure
17.1). Then G the sum of the moments of the two forces is given by

G=(rix —F+(r,x F

=(r2—r1))<F
= 4B x F.

Thus G is independent of the position of O and |G| = AB sin 0|F), i.c.
the magnitude of G is the product of the magnitude of one force and
the perpendicular distance d between them. G is called the moment
of the couple.

There will be many different pairs of equal and opposite forces
forming couples of the same moment G (say). They will all be
equivalent to one another. For this reason a couple is usually
referred to only'by its moment, the constituent forces not being
specified.

A set of couples G, G, G . .. can always be replaced by a single
couple G such that

G=Gl+Gz+G3
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17.3. REPLACEMENT BY A SINGLE FORCE AND COUPLE

A simple equivalent system that can be found for any system of
forces consists of a single force, whose line of action passes through a
chosen point, and a couple. For we can, in general, find a force R
such that R = P, and, if the point chosen has position vector r', we
can find a couple G such that G + ¥ x R = Z(r x P). (In special
cases, of course, it may be that either or both of R and G are zero.)

Thus any system of forces may be replaced by a single force, acting
through a given point, together with a couple.

Example. Forces Aa, 22b, A(c + b — a) act through the points with
position vectors 0,0, a — b respectively, a, b, ¢ being constant vectors.
Find an equivalent system consisting of a force acting at the point
(a + b) together with a couple.

Let the force be R and the couple of moment G. Then equating
vector sums,

ia+2ib+ Ac+b—a=R
R = A(3b + ).

Taking moments about the origin,
0+0+@—-bxic+b—ay=@+5b xi3b+c)+6G
Maxc+axb—bxc+bxay=Nax3b+axe+bxc

+G
G= —ila x3b+2bxc)
G = b x (3a — 2o¢).

The required system is a force A(3b + c¢), acting through the point
a + b, together with a couple of moment Ab x (3a — 2c¢).

17.4. COPLANAR SYSTEMS

The results of the preceding sections remain true, of course, for
systems of forces all lying in the same plane (coplanar systems).
that is: (a) If two systems are equivalent, the vector sums of the
forces are equal, and the sums of moments about a fixed point are
equal.

(b) Any system can be replaced by a single force, acting through a
given point, together with a couple. ,

When the two systems of forces all lie in the same plane, the style of
the solution can be modified. The vector sum condition can be met
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by equating the sum of the resolved parts in two directions at right
angles. Also, since the direction of all moments will be perpendicular
to the plane of the forces, only their magnitudes need be considered—
assigning + or — signs according as they have {say) anticlockwise or
clockwise turning effects.

Example 1. Forces of 3, 4 and 8 N act along the sides AB, BC, DA
respectively of arectangle ABCD. AB = 6 m, BC = 4 mand E is the
mid-point of AB. Find the three forces acting along EC, CD and DE
which are equivalent to the given forces.

A N3 B A B
= o/ \X
R P
8N 4 Y 4N Lo
2 |
1] C D C
Figure 17.2

Resolving (refer to Figure 17.2),
parallelto DA 8 — 4 = Rsina — Psina, SO (1]
parallel to AB 3=Rcosa+ Pcosa— Q. ....(ii)
Taking moments about E (clockwise positive).
4x3+8x3=0Qx4 ... (i)

From (iii) Q@ =9 and substituting this value in (ii), we have
(P 4+ R)cosa = 12,i.e. since o = tan~ ' %

P + R =20.
Also from (i) R—-P=5

Adding 2R =25
. R=123 and P =74

The three forces required are 73, 9, and 125 N along EC, CD and
DE respectively.

Example 2. ABCDEF is a regular hexagon of side 10 cm. Forces of
2,4,3 and 6 N act along AB, BC, ED and FE respectively. Find the
single force acting through the centre of the hexagon and the couple
which together are equivalent to the given system.
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A 2N B

a4
10cr AN
»
F c F c
6N

3N
Figure 17.3

Let the required force and couple have magnitudes R and G, and
let R be inclined at an angle 6 to FC (refer to Figure 17.3).
Resolving,

parallel to EA —4sin 60° — 6 sin 60° = Rsin § ... ()
parallel to AB 2 + 4cos60° + 3 + 6cos60° = Rcosf. ....(ii)

Taking moments about O (anticlockwise positive),

—2x5/3-4x5/3+3x5/3+6x5/3=G+0....(i)

From (i) Rsinf = —Sﬁ,
and from (ii) Rcos 8 = 10.
Squaring and adding, R* =75+ 100 .. R=5/7N.

Dividing, tanf = — with sin 6 negative

J3
2
0 = 360° — 40° 54'

0 =319°6.

From (iii) G=5/3(-2—4+3+6)
G =15/3Ncm = 3,/3/20 Nm.

The required equivalent system consists of a force of S\ﬁ N,
through O, making an angle of 40° 54’ with OC on the same side as
D together with an anticlockwise couple whose moment has
magnitude 3\/§/20 Nm.

An additional property of a coplanar system of forces is that it can,
in general, be replaced by a single equivalent force R. In this case,
however, R cannot be made to act through a specified point. Its
line of action is determined by the configuration of the system to
which it is equivalent.
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For we can, as before, find a force R such that R = ZP. Then,
since all the moments are perpendicular to the plane of the system, R
can be positioned so that ¥ x R = Z(r x P), i.e. a point ¥’ can be
found such that the moment of R about the origin is equal to the sum
of the moments of the forces about the origin. (Unless, of course,
P = 0, in which case the system is equivalent to a couple.)

Thus any system of coplanar forces can be replaced by a single force
or a couple.

Example 3. ABCD is a rectangle such that AB = Sa, BC = 2a.
Forces of magnitude 2F,6F ,4F and 5F act along the sides DA, BA, BC,
DC respectively. Find the magnitude and direction of the single force
equivalent to this system, and find the equation of its line of action
referred to DC, DA as axes.

A+ —~-5g---+g A B

s 6F °

2g42F LFy /<

H 5F ke —x-+/0

D o c D / c
Figure 17.4

Let the single equivalent force be as shown in Figure 17.4.
Resolving,

parallel to DA 2F — 4F = Rsin 0 o),
parallel to AB 5F — 6F = Rcos 8 ... (i)
Taking moments about D,
6F x 2a — 4F x 5a = Rsin 0x N 111
From (i) Rsinf = — 2F,
and from (ii) Rcos8 = —F.
Squaring and adding, R*=4F*+F* : R=F/5
Dividing, tan 6 = 2 with sin 6 negative
: 6 = 180° + 63° 26’
C 0 = 243°26".
Substituting for R sin 0 in (iii),
—8Fa = —2Fx
x = 4a.
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EQUIVALENT SYSTEMS OF FORCES

Thus the line of action of R has slope 2 and passes through the point
(4a,0). Hence its equation is

y—0=2(x — 4a)
or y=2x — 8a

The required force is of magnitude F\/g making an angle of
63° 26" with CD on the opposite side to 4. It acts along the line
y =2x — 8a.

Note that it will be shown later that any system of parallel forces,
coplanar or otherwise, can also be replaced by a single force or a
couple (refer to Section 18.1).

Exercises 17(a)

1. Thelines ofaction oftwo forces F; = 2iand F, = —i — kunits
pass through the points whose position vectors are k and j + k
respectively. Find the force P which, together with a force — k units
acting through the point whose position vector is j, forms a system
equivalent to F; and F,.

Show also that the line of action of P passes through the point
—j+ k

2. A couple consists of two equal and opposite forces of 6 units
acting parallel to Ox through the points (0,0) and (0, 4). Find the
magnitude and line of action of the force which, together with a force
of 3 units parallel to the y-axis through (5, 1), forms an equivalent
couple. Illustrate with a diagram.

3. i, j, k are unit vectors parallel to rectangular axes 0X, 0Y, OZ
respectively. Forcesi + j + k, i — 2j + k and 2i + j — k units act
through the points (0, 0, 0), (1, 0, 1) and (0, — 1, 1) respectively. Find
the single force through the origin and the couple which are to-
gether equivalent to this system.

4. ABCDEF isaregular hexagon. Forces of magnitude 2F,4F, 2F,
3F and 4F act along BA, BC, DC, DE and FE respectively. Find the
three forces acting along AB, BD and DA which are equivalent to
the given system.

5. ABCD is a rectangle with AB = 4m, BC = 3m. Forces of 6,
6,15, 9 N act along AB, BC, CA and AD respectively. Replace the
system by a single force acting through A4 with a couple.

6. ABCDEF is a regular hexagon. Forces of magnitude 2,2, 4, 14,
14 and 4 N act along AB, BC, CD, ED, FE, FA respectively. Find
the single force equivalent to this system.

7. A, B, Carethe points (12, 0), (6, 8) and (0, 0) respectively referred
to rectangular cartesian axes. Forces of magnitude 10F, 15F and 5F
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act along AB, BC and CA respectively. Find the magnitude of the
single force equivalent to this system and the equation of its line of
action.

8. ABCDisarhombus of side a such that angle ABC is 60 degrees.
Forces of magnitude 2P, 2P, 4P, 4P and 2P act along AB, BC, CD,
DA and AC respectively. Show that the system is equivalent to a
couple and find its moment.

9. If ABCD is a parallelogram, show that

JAB + uBC + ACD + uDA = 0.

ABCD is a parallelogram in which 4B = 4 cm, AD = 3c¢m and
angle ABC is 30 degrees. Forces of 8, 6,8 and 6 N act along 4B, BC,
CD and DA respectively. Show that the system reduces to a couple
and find its moment.

10. A force of 10 N acts along the x-axis and parallel forces of 6 N
and 4 N, in the same sense, act along the lines y=1and y =3
respectively. Find the magnitude of the single force equivalent to
this system and the equation of its line of action.

17.5. RESULTANTS

In this section an alternative method of reducing a set of forces to a
simpler equivalent system will be developed. It will be shown that
intersecting forces may be treated as if they were acting on a particle
at the point of intersection and replaced by their resultant acting at
that point.

Figure 17.5 Figure 17.6

Consider two forces F;, F, which intersect and their resultant R
drawn through their point of intersection A (refer to Figure 17.5).
Let A have position vector a with respect to some origin O. Then
taking moments about O,

the sum of moments of F, and F, =a x F| +a x F,
=4 X (Fl +F2)
=ax R

the sum of moments of F, and F, = moment of R.
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Thus R, which by definition has the same vector sum as F; and F,,
also has the same moment about O. R is therefore equivalent to the
system consisting of F; and F,.

Parallel forces can also be reduced in this way (refer to Figure
17.6). Twoequal and opposite forces Pand — P (in the same straight
line) can be introduced to intersect with the parallel forces F,, F,.
Their presence will not alter the vector sum or the total moment of
the system. We now have intersecting forces and the system may be
reduced step by step taking them in pairs. The method breaks down,
however, if F,, F, form a couple.

Any system containing intersecting forces and/or suitable
parallel forces may be reduced in this way.

If a system of forces can be reduced in this way to a single resultant
R, then it follows that R is equivalent to the system.* For this
reason the words ‘resultant’ and ‘single equivalent force’ are used
interchangeably.

Example 1. ABCD is a square. Forces of 2, 3, 3, 2, and \/EkN act
along the sides AB, CB, CD, AD and BD respectively. Find the
magnitude, direction and line of action of their resultant.

A ___2kN B A B A B
45° 217kN kN
3kN
2kN 312kN IR
BuN TN 2kN
D 3kN C D C D C
(a) (b) (c)
Figure 17.7

The forcesalong ABand AD have a resultant 2\/5 kNactingalong
AC. Similarly, the forces along CB, CD have a resuitant 3\/5 kN
acting along CA. Thus the given system of forces shown in Figure
17.7(a) can be reduced to that shown in Figure 17.7(b).

This can then be further reduced to a force \/5 kN acting along
CA together with the given force of \/EkN along BD (refer to
Figure 17.7(c)).

In turn the resultant R of these two forces is found acting at their

point of intersection. Clearly R is of magnitude 2 kN acting parallel
to CD.

* The statement that the sum of the moments of a set of forces about a fixed point O
is equal to the moment of their resultant about O, is sometimes called the principle
of moments.
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That is, the resultant of the given system is a force of 2 kN acting
parallel to CD through the point of intersection of AC and BD. (This
result could, of course, have been obtained by resolving and taking
moments as in Section 17.3.)

Example 2. Forces EZ 34C and 2CB act along the sides of a triangle
ABC. Show that if M is the mid-point of BC their resultant is repre-

sented by 2AM. Show also that its line of action cuts BC at X where
BX:XC=3:—-1

Figure 17.8

Referring to Figure 17.8, let R be the resultant of the given system.
Then

R = BA + 34C + 2CB
=(BA + AC + CB) + (A4C + CB) + 4C
=0+ AB + AC.

But i4B + ,u;l—(f =1+ ,u)ﬁ where D divides BC in the ratio u: A
(refer to Section 3.3).

R =24AM where M is mid-point of BC.

Now, by this same theorem, the resultant of the forces BAand 34C
is parallel to AX, where X divides BC externally in the ratio 3:1. It
must therefore lie along AX since the two forces intersect at A.

Hence the system can be reduced to two forces intersecting at X
and thus R must act through X. .

The resultant of the given system is a force 24 M acting through the
point X.

Example 3. i,j, k are unit vectors along rectangular axes 0X,0Y,0Z.
A force 2i + j + k units acts at the point (4, — 8, 8) and another force
i — 2j + 2k units acts at the point (a, —4,0). Show that if these forces
intersect,thena = — 3 and find the vector equation of the line of action
of their resultant.
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The vector equation of a line through the point with position
vector aand parallel to the vector bisr = a + tb, where tisa variable
parameter (refer to Section 3.12).

Hence the equations of the lines of action of the two forces are

r=(4—8 +8k)+t2i +j+ k)
and r = (ai — 4j) + s(i — 2j + 2k).
If these two lines intersect, then values of s, t exist such that
(4i — 8 + 8k) + 12 +j + k) = (ai — &) + s(i — 2j + 2k).

Equating components,

4+2t=a+s R 1]

—8+t=—4-—2s ... (i)

8+1t=2s ... (1)

From (ii) and (iii)) we obtain t = —2, s = 3 and substituting these
values in (i) gives a = —3.

The point of intersection of the lines can be obtained by putting

t = —2 in the equation of the line of action of the first force giving

ro = (4i — 8 + 8k) — 2Q2i +j + k)
= —10j + 6k.
Now the resultant R of the two forces is such that

R=Qi+j+k +i—2+2k
= 3i — j + 3k
Hence the equation of the line of action of R is
r = (—10j + 6k) + u(3i — j + 3k).

Exercises 17b

1. ABCD is a square. Force of 1,2,2 and 1 N act along AB, CB,
CD and AD respectively. Find the magnitude, direction and line of
action of their resultant. = | .

2. Forces represented by AB, CB and CA act along the sides AB,
CB and CA of a triangle ABC. Show that their resultant is repre-
sented by 2CB and find the point in which its line of action cuts AC.

3. ABCis an equilateral triangle. Forces of 2, 2\/3 and 2 kN act
along AC, CB and AB respectively. Find the magnitude and direc-
tion of their resultant and the point in which its line of action cuts BC.
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4 ABCisa triangle. Three forces are completely represented 1 by
4AB 2CBand CA. Show that their resultant is represented by 3MB
where M is the mid-point of AC. Find the points in which the line of
action of this resultant cuts 4B, AC_e’md_C’B. .

5. Three forces represented by 24 B, 2BC and 2C A act at the mid-
point of AC. Find their resultant.

6. Forces 3i + 2j + 3k and i — 3k units act through points
whose displacements are 97 — 3k and 3i — 2j + 3k units from a
fixed point O. Show that the lines of action of these forces intersect
and find the vector equation (with respect to O) of the line of action of
their resultant,

EXERCISES 17*

1. ABCDisasquare of side a. Forces of magnitude4P,2P,3P and
P act along AB, CB, CD and AD respectively. Find the magnitude
and direction of their resultant and the point in which its line of
action cuts CD.

2. ABCisanequilateral triangle of side 2m. Forcesof4,2and 3 N
act along BA, BC and AC respectively. Find an equivalent system
consisting of a force through B together with a couple.

3. A force 3i — 4j + 5k N acts at a point O and a second force
2i — j Nactsthrough a point whose displacement from Oisj + 2k m.
Find an equivalent system consisting of a force acting through the
point whose displacement is ¢ metres together with a couple.

4. ABCisanequilateral triangle and D, E, F are the mid-points of
BC, CA, AB respectively. Forces of magnitude P, 2P and 3P act
along AB, BC and CA respectively. Find the three forces acting in
DE, EF and FD which are equivalent to the given system.

5. Show that the line of action of the resultant of two like (in the
same sense) parallel forces F;, F, divides any line cutting them
internally in the ratio F,: F;.

What is the corresponding result for unlike parallel forces?

6. A trapezium ABCD is such that AB is parallel to DC, angle
ABC is a right angle, AB = 4m, BC = 3m and CD = 7Tm. Forces

of magnitude 16, 12, 21 and 9ﬁ N act along BA, BC, DC and DA
respectively. Find the magnitude of their resultant and show that it
passes through the mid-point of AC.

7. A couple of moment —4i + 7j — Sk units consists of forces
acting at the points P;, P, whose position vectors are i + 55 + 4k,
—3i + 2j + 3k respectively. F 1nd the forces acting at P;, P,.

8. A force represented by kBC acts along the line BC. Express

* Exercises marked thus, f, have been metricized.
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the magnitude of the moment of this force about a point A4 in terms
of the area of the triangle _,iBC.

Forces 4Z§, 2CB and CA act along the sides AB, CB, CA o_f_a’
triangle ABC. Show that their resultant is represented by 3MB
where M is the mid-point of AC.

If the area of the triangle is A and MB = [, find the perpendicular
distance of the line of action of the resultant from B.

9. ABCD is a rectangle such that AB = 14 m, BC = 8 mand Eis
the point which divides 4B internally in the ratio 3:4. Forces of
1,4,7,4 and 10kN act along B4, CB, DC, DA and ED respectively.
Show that the system is equivalent to a couple and find its moment.

10. i, j, k are unit vectors parallel to the axes of x, y, z respectively.
Three forces 2i + j + 3k, —i + 4j + 7k and —i — 5 — 10k units
act through the points (3, 2, 4), (2, —3, —6) and (3, 11, 21) respec-
tively. Show that they are in equilibrium.

11. ABCD is a trapezium in which AB is parallel to DC. E, F are
the mid-points of AB, DC respectively. Show that the resultant of
forces comp_lgtely represented by AD and BC is completely repre-
sented by 2EF.

12. ABCD is a square of side a. Forces of magnitude 3P, 5P, 3P,
2P and /2P act along BA, BC, DC, DA and CA respectively. Find
the magnitude of their resultant and the equation of its line of action
referred to DC, DA as axes.

13. ABCD is a rectangle in which AB = 2a, BC = a and E is the
mid-point of AB. Forces./2P,./2P, P, 3P actalong AB, BC,CE and
DE respectively. Find the magnitude and direction of the force
which, when added to the system, makes it equivalent to a couple.

14. Two forces F, =i + j + k and F, =i + 2j — k act through
points whose position vectorsare.S; = + j + 2kand S, = pj + Sk
respectively, relative to a fixed point and three mutually perpendicu-
lar unit vectors #, jand k. If the lines of action of F; and F, intersect,
find p, and find the vector equation of the line of action of the result-
ant of F; and F,. (London)
__15. ABCD is a quadrilateral. Forces represented by Z_B’, ZB,
BC and DC act along the corresponding sides. Show that their
resultant acts through the mid-point of DB and find its magnitude
and direction.

16. ABC is a triangle such that AB = 6 m, BC =4mand CA =
4 m. Forces of 3,2 and 2 N act along AB, BC and CA respectively.
Show that the system is equivalent to a couple and find its moment.

Find the magnitude, direction and line of action of the resultant
if the force in AB is reversed.
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17. Forces X, Y act along rectangular axes of x and y respectively
in the positive direction, together with an anticlockwise couple of
moment G (in the same plane). Find the equation of the line of action
of the single force equivalent to this system.

18. A system of forces in the plane of a triangle ABC has clockwise
moments of 2G, —3G and 3G about the points 4, B, C respectively.
State why the system reduces to a single force F and not a couple.
Find where the line of action of F meets BC and find its moment
about the centroid of the triangle 4ABC.

19. A force has components X, Y parallel to rectangular axes
Ox and Oy respectively and (x, y) is a point on the line of action.
Show that the force is equivalent to an equal force at the origin O
together with a couple. State the moment of the couple.

The components of three forces in the plane are given at time ¢ by

(2P cos wt, 0), (P cos wt, 2P sin wt) and (3P sin wt, P cos wt),

and their lines of action pass respectively through O and the points
(a, a) and (—3a, 2a), where P, w and a are constants. If the system is
reduced to a force with components X’, Y’ at O and a couple G, find
the values of X', Y' and G. Deduce the equation of the line of action
of the resultant, and show that this line passes through a fixed point
which is independent of t. (J.M.B)

20. ABCDis a plane quadriiateral whose opposite sides meet in E
and F. The mid-points of AC, BD and EF are X, Y and Z respec-
tively. Show that

(@) AB+ CD = CB + AD,

(b) AB 4+ CB + CD + AD = 4XY,
and deduce that X, Y, Z are collinear.

If AB represents a force in magnitude, direction and position,
show that the system of forces represented by

AB + BC 4+ 2CD + 2DA + AC

is equivalent to a couple. (W.J.E.C)

21. ABCD is a square of side 6 m, F is a force coplanar with
ABCD. The moments of F about A, B and C are 60, 24, —24 N m
respectively. Show that the line of action of F passes through the
mid-point of BC and find the magnitude of F. Find also where the
line of action F meets CD, DA and AB.

22. Forces 2j, 2j — 2i units act at points whose position vectors
arei + j + k, and jrespectively. Find the two forces, acting through
the points whose position vectors are i + j and (i + k)/2, which are
together equivalent to the given system.
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23. Forces of magnitude 2, 1, 1 1b wt. act along the sides AB, AC,
BC of an equilateral triangle ABC, in the directions indicated by the
order of the letters. If E is the point where the perpendicular to BC
at B meets CA produced, and F is the mid-point of AB, prove that
the resultant is of magnitude ﬁ Ib wt. and acts along EF. (Oxford)

(Note: a /b wt. is a unit of force.)

24. Forces of 1, 3,2./21b wt. act along the sides AB and CD and
the diagonal BD respectively of a square ABCD, in the directions
indicated by the order of the letters.

(a) Find the forces acting along the sides BC and AD and the
diagonal CA which are equivalent to the given set of forces.

(b) Find the points where the resultant of the given set of forces
meets AB and AD. (Oxford)

(Note: a /b wt. is a unit of force.)

25. ABCD is a square of side 7cm P, Q, R and § are points on
AB, BC, CD and DA respectively such that

AP =BQ = CR =DS =3cm

Forces 2, 3, 4 and 5 N act respectively along PQ, OR, RS and SP
in the directions indicated by the order of the letters. Find the
magnitude and direction of their resultant and the position of the
point in which the resultant cuts AB (produced if necessary).

It is required to replace these forces by one force through the
centre of the square ABCD together with a couple. Find the magni-
tude of the force and the moment of the couple. (London)t

26. ABCD is a square of side a. In the plane of the square, a force
P acts through 4 and a perpendicular force 2P acts through B.
Their resultant passes through D and through a point X on BC
lying between B and C. Find the magnitude of the resultant and
prove that BX = a/4.

Two additional forces are now introduced into the system: a
force P acting through D parallel to the first force P, and a force 2P
acting through C parallel to the second force 2P. If the new forces
have the same senses as the old ones, find the magnitude and the line
of action of the resultant of the four forces.

If the new forces have opposite senses to the old ones, what will the
resultant be? (London)

27. a, b, ¢ are non-zero constant vectors and A is a non-zero scalar.
Three forces Ala + b + 2¢), Al@a — b + ¢) and AMa + b — ¢) act
through points whose position vectors are a, b, ¢ respectively.
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Find the single force through the origin and the couple which are
together equivalent to the given system.

State the condition that must be satisfied if the three forces are
reducible to a single equivalent force.

28. (a) OABC is a rectangle. O is the point (0,0), A the point..
(2,0) and B the point (2,1). Forces P, Q and R act respectively
along 0A, AB and BC in the directions indicated by the order
of the letters. Their resultant lies along the line x + 2y = 7. Find
the magnitude of the resultant in terms of P. Find also the moment
of a couple which when added to the system would transfer the
resultant to the line x + 2y = 9.

(b) Oisany pointin the plane of a square ABCD whose dlagonals
intersect_at E. Four forces are represented completely by 30A
2OB 30C and 20D. Show that their resultant passes through E,
and find its magnitude in terms of OE. {(London)

29. Two forces represented by the vectors AB and BD act at the
corner B of a plane quadrilateral ABCD and two other forces
represented by qCA and rDC act at the adjacent corner C. If the
system is in equilibrium, find the angle between AD and BC and
the values of g and r. (J.M.B,, part)

30. The system S, consists of four forces in a plane. Fixed
rectangular axes Ox, Oy are taken in the plane and the components
of the four forces parallel to Ox are then respectively —3,2,4,1 dynes,
while the components parallel to Oy are respectively 1, -2, —1,
3 dynes. The lines of action of the forces pass through the points
(1,2), (2,4), (3, 1), (4, 5) respectively. Show that the line of action of
the resultant of the system has equation x — 4y + 5 = 0.

If the system S, , which is equivalent to S, , consists of two parallel
forces F, and F, with lines of action passing through the points
(—1,0) and (3, 0) respectively, find the components parallel to Ox
and Oy of both F; and F,. (W.J.E.C)

(Note: a dyne is a unit of force.)

31. Four forces act, one along each side of a plane quadrilateral.

(a) If the forces all act the same way round the quadrilateral and
each is represented in magnitude by the side in which it acts, show
that the resultant is a couple whose moment is represented by
twice the area of the quadrilateral.

(b) If the forces are in equilibrium and the quadrilateral is cyclic,
show that the resultant of two adjacent forces acts along a diagonal
and that each force is proportional to the opposite side.

(London)
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32. Forces Fy, F,, F; act through points whose position vectors
are ry, r,, r3 where

F, =8 +8 + 4k
F,=6i — 3j — 6k
Fy = 5i — 10j + 10k
ro=3i+ 18 — 6k
r, =i+ 7 — 16k
ry = 14i + 5 — 2k

Find the single force through the origin and the couple which are
together equivalent to this system.

Show that this system can be reduced to a single force and find
the vector equation of its line of action.
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18.1. CENTRE OF PARALLEL FORCES

CONSIDER a set of parallel forces Fd, F,d, Fid, ..., d being a unit
vector in their common direction, acting at points whose position
vectors are ry, r,, ¥4 ... respectively.

Then if £F % 0* and if a single equivalent force R can be found,
we have equating vector sums,

ie. R = 4XF, ... (i)

Also, if the point with position vector r lies on the line of action
of R, then taking moments about the origin

FXR=r1XF1d+r2Xde+"'
or Fx R=2X(Fr) x d.

Then substituting for R from equation (i),
Fx dZF = 3X(Fr) x d

Z(Fr)
>F

Equation (ii) will always be satisfied if 7 = X(Fr)/ZF. Hence the
line of action of R must pass through the point (G say) which has
this position vector.

Again provided F x 0,* such a point can always be found and
its position is independent of 4. So we have shown that such a set of
parallel forces can be reduced to a single force which always passes
through G even if the direction of the parallel forces changes.

G is called the centre of the parallel forces.

Fxd=

X d. . ... (i)

*IfF = 0, then the set of parallel forces is equivalent to a couple. So this section
shows that any system of parallel forces may be reduced to a single force or a couple.
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18.2. CENTRE OF GRAVITY

The weights of a set of particles form a set of parallel forces. Hence,
if the particles have position vectors r;,r,,rs,... and weights of
magnitude W, W,, W;,..., their resultant weight will be of
magnitude LW acting through the point

F = S(Wr)/zW

called the centre of gravity of the system.

For a system of particles whose distances from the centre of the
Earth are approximately the same, their weights are directly pro-
portional to their masses. Hence r = X(mr)/Zm and their centre of
gravity coincides with their centre of mass as defined in Section 16.1.
The reader is referred to that section for calculations of the position
of the centres of gravity of various sets of particles.

18.3. CENTRE OF GRAVITY OF A RIGID BODY

The particles that make up a rigid body are fixed relative to one
another so that the centre of gravity is fixed relative to the body.
Its position is independent of the alignment of the body relative to
the Earth.

In calculating the position of the centre of gravity of a rigid body
we shall, however, treat it as a continuous distribution of matter,
dividing it into elements of weight dw. Taking the limit as dw — Q,
the position vector 7 of the centre of gravity will be given by
{7 = [r dw/f dw.

Rather than use this formula, however, it will be found more
convenient to work from first principles. We shall take moments
about suitable axes (refer to Section 3.10) using the fact that the
moment of the resultant weight about a given axis is equal to the
sum of the moments of the individual weights about that axis.

Example. A straight thin rod AB of length 2l has a uniform cross-
section. Its density varies so that at a point distant x from A its weight
per unit length is w + Ax. Find the position of its centre of gravity.

Y
21
e ———— X ———=G
A —+=F B8
X 3x
Figure 18.1
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Let the centre of gravity G be at a distance X from A4 and consider
an element of the rod of length éx distant x from A. (Refer to
Figure 18.1.)

The weight of the element ~ (w + Ax) dx, and the weight of the
rod ~ X[(w + Ax) dx].

Nowimaginetherod placed so that the weights act perpendicularly
into the plane of the paper and take moments about a line AY
perpendicular to the rod.

Tl{ew + Ax) 0x]. X ~ Z[(w + Ax)dx. x].

Then in the limit as dx — O (and the element becomes a particle),

21 21

(w+ Ax)dx.x = (w + Ax)x dx
0 0

/1)(2 21 x2 ix3 21
wx +——1| . X=|w— +—
[ 2 :lo [ 23 ]0
Qol + 2AP%)x = 20l* + 8413/3

% = Bl + 4423w + Al).

The centre of gravity of the rod is at a point distant 3wl + 441%)/
3(w + A from A. (Note that if 1 = 0, so that the density is uniform,
then X = [, i.e. G is the mid-point of the rod as might be expected.)

18.4. CENTRES OF GRAVITY OF
SOME STANDARD BODIES

It is not always necessary to consider a body as a set of elemental
particles. It can often be split up into similar elemental masses
whose centres of gravity are known and whose weights act through
these centres of gravity.

Also, if the body has a line (or plane) of symmetry, these centres
of gravity can be made to lie on it. Then taking moments about a
suitable axis gives the centre of gravity of the whole body.

These principles will now be used to find the centres of gravity of
some standard-shaped bodies. In most cases methods involving
integration (as in Example 1, Section 18.3) will be used. However,
it is sometimes possible to demonstrate the position of the centre
of gravity without the use of calculus and we begin by establishing
the position of the centre of gravity of a triangular lamina in this
way.
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A

D

Figure 18.2

A uniform triangular lamina

Divide the triangle into n thin strips of equal widths (like PQ in
Figure 18.2) parallel to one side. Then as n increases indefinitely,
the strips become uniform thin rods with their centres of gravity at
their mid-points. All these mid-points, such as G, lic on the median
AD and hence the centre of gravity of the whole lamina must lie
on AD. Similarly it must also lie on the other two medians of the
triangle.

Thus the centre of gravity of a uniform triangular lamina is at the
point of intersection of its medians, i.e., at a point G on AD such that
GD = $AD.

Figure 18.3

A uniform lamina in the form of a sector of a circle

Let the sector have radius r and subtend an angle 2« at the
centre O of the circle (refer to Figure 18.3). From symmetry the
centre of gravity G lies on OX the bisector of this angle.

Consider an elemental sector inclined at an angle § to OX and
subtending an angle 66 at 0. It will be approximately a triangle with
its centre of gravity G, distant r from O.

Then, if w is the weight per unit area of the lamina, the following
table can be drawn up.
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Body Weight b ’s‘“;rf,:{,g, of G
Whole sector wir2e X
Element wir? 56 3rcos

Again imagine the weights acting perpendicularly into the plane
of the paper. Taking moments about OY,

(Whr?2a)X ~ T(wir260. %r cos 0).
Then in the limit as 60 — 0,

a
wirl2ax = f wir® cos 6 d0
—a

ax = 4r(sin 6]%,

|

X = %r(sin a/a).
The centre of gravity of the sector lies on OX at a distance
£r(sin a/a) from O.
If « = 7/2, so that the lamina has the form of a semicircular disc,
then
2 1 4r

x=§rn—/2—§.

je - - >

)’
\_/‘ -
x
Figure 18.4

A uniform solid hemisphere

Referring to Figure 18.4, the hemisphere is of radius r and OX is
the normal to the plane base through its centre. From symmetry
the centre of gravity G lies on 0X.

Consider an elemental disc, of thickness dx, with its plane parallel
to the base of the hemisphere and distant x from it. If A is the radius
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of this disc, then h? = r?> — x? by Pythagoras theorem. Hence the
volume of the disc ~ mh? dx = n(r? — x?) éx.
Let w be the weight per unit volume of the hemisphere.

Body Weig | Disenced Cof G
Whole hemisphere | winr® X
Element wr(r? — x?) 6x x

Taking moments about OY
(Winrd)x ~ Z[wna(r? — x2) éx. x].

Then in the limit as éx — 0,

r
winrx = f wr(r? — x?)x dx

r4 r4

2.3 —

3 X 3 4
ivin ¢ T
X = —.
giving 8

The centre of gravity of the hemisphere is a point on OX distant
$r from the base.

Figure 18.5

A uniform solid tetrahedron

Let the tetrahedron have height & and let the area of its base
be A (refer to Figure 18.5).

Consider an elemental triangular lamina with its plane parallel
to the base, of thickness dx and distant x from the vertex O of the
tetrahedron.
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Since such triangles are similar to the base triangle their centres
of gravity all lie on OG’. Thus the centre of gravity G of the whole
body lies on OG', the line joining the vertex to the centroid* of
the base.

Again from similar triangles the area A, of the element is given by
Ai/A = x*/h? so that A, = x?A/h2

Let w be the weight per unit volume of the tetrahedron.

. Distance of C of G
Body Weight from OY
Whole body wi Ah X
Element w(x?A/h?)éx x

Taking moments about 0Y,
‘ (W} AR)X = Z[w(x2A/h?) 6x . x].
Then in the limit as dx — 0,

h 2
w%Ahf:prAxdx
0
1 1 3
hf:—fxdx
3 h2 0

hZ
lh—:_
3nx 4
. 3h
x—4.

The centre of gravity of the tetrahedron lies one quarter of the
way up a line joining the centroid of the base to the vertex.

A pyramid can always be split into tetrahedrons with a common
vertex. If the number of sides of the base of the pyramid increases
indefinitely, the perimeter of the base tends to a smooth curve and
the pyramid becomes a cone. Hence our result can be extended
to any pyramid or cone.

The centre of gravity of any uniform solid pyramid or cone lies
one quarter of the way up a line joining the centroid of the base to
the vertex.

* The centroid of a plane area coincides with the centre of gravity of a uniform

lamina of the same shape. More general remarks about centroids are to be found in
Section 18.5.
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A frustum of a uniform thin spherical shell

Let the sphere be of radius r and let the rims of the frustum subtend
angles 2a and 2 at the centre O respectively. From symmetry the
centre of gravity G of the frustum lies on OX (refer to Figure 18.6).

Figure 18.6

Consider an elemental frustum of radius y which subtends an
angle 20 at O and whose slant height is s. Then the surface area
of this element is approximately 2ny ds* = 2zr sin 0r 60.

Let w be the weight per unit surface area of the shell.

Body Weight Dlsta;:oer:jog of G
Whole frustum S(w2nr? sin 8 66) X
Element w2nr? sin 6 66 rcos @

Taking moments about OY,
T(w2nr? sin 0 80). x= X(w2nr? sin 0 66 . r cos 0).
* In standard mathematical texts it is shown that the area of the curved surface of
a frustum of a right pyramid or cone is given by 3(sum of perimeters) x slant height.

In this case surface area of the element = $(2ny + 2n(y + Jy)) 6s = 2ny &s neglecting
the second order small quantity oy Js.
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Then in the limit as 66 — 0,

8 8
)"cf w2nr? sin #df = f w27r sin 0 cos 6 d6

4

B B
)?f sin 8do = rf sin 6 cos 6 dO
X[—cos 0 = r[—4 cos? 6}

_ r
X(cos B — cosa) = 3(cos2 B ~ cos? )

=

= %(cosﬁ + cos a)

= 3(h; + ha).

The centre of gravity of the frustum lies on OX mid-way between
the two planes which cut it off from the sphere.

If follows that the centre of gravity of a spherical cap lies half-way
from its base to its vertex, and that the centre of gravity of a hemis-
pherical shell is distant 47 from its base.

et

Figure 18.7

A uniform thin hollow pyramid (without base)

The surface of the pyramid consists of triangular laminae each
of whose centre of gravity lies one-third of the way up its median.
Thus the pyramid is equivalent to a set of particles at G,, G,, G; etc.
all of which are at a height of h above the base of the pyramid (refer
to Figure 18.7).

Hence the centre of gravity of the pyramid must be $h above the
base and, since cross-sections parallel to the base are similar, it must
lie on the line joining the vertex to the centroid of its base.
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If the number of sides of the base increases they will tend to a
smooth curve and the pyramid will become a cone for which our
results still hold.

Thus the centre of gravity of a hollow pyramid or cone lies
one-third of the way up the line joining the centroid of the base to
the vertex.

18.5. CENTROIDS

If, in the above examples, we had used elements of area (or volume)
in our formulae instead of elements of weight, the points found
would have been called centroids of area (or volume).

Hence for uniform bodies, centres of gravity, centres of mass and
the centroids of the corresponding geometrical figures will coincide.

18.6. LIST OF STANDARD RESULTS

Note that the results below marked # have not been proved in
the text but will be given as exercises later. It has been assumed,
in each case, that the bodies are uniform and that their centres of
gravity lie on lines of symmetry.

Body Position of C of G
Straight rod Mid-point
# Rod in form of circular arc of radius r subtending rsina

angle 2o at centre

# Lamina in form of parallelogram
Lamina in form of triangle
Lamina in form of sector of a circle of radius r
subtending 2« at centre

Solid hemisphere of radius r
Solid pyramid or cone

Frustum of spherical shell cut off by parallel
planes
Hollow pyramid or cone

from centre

Intersection of diagonals
Intersection of medians
2rsin a

from centre

3r from centre
4 way up line from centroid
of base to vertex

Mid-way between the planes

§ way up line from centroid
of base to vertex

Exercises 18a

1. Show that the centre of gravity of a uniform lamina in the
form of a parallelogram lies at the point of intersection of its

diagonals.
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2. A uniform thin rod is bent into the form of an arc of a circle
of radius r subtending an angle 2« at the centre of the circle. Find
the position of its centre of gravity.

What will be its position if the rod forms a semicircle?

3. Find the position of the centre of gravity of a uniform hemis-
pherical disc by dividing it into strips parallel to its straight edge.

4. Find the position of the centroid of volume of a right circular
cone by dividing it into discs parallel to its base.

5. A straight thin rod of length 2! is of variable density such that
at a point distant x from one end its density is p + Ax2. Find the
position of its centre of gravity.

6. Find the position of the centre of gravity of a uniform thin
shell in the form of the curved surface of a right circular cone by
dividing it into rings parallel to its base.

7. Prove that the centre of gravity of a uniform lamina enclosed
by the line x = h and the curve y* = 4ax is the point (3, 0).

8. Find the position of the centre of gravity of a uniform sotid
in the form of a cap of a sphere of radius r, the depth of the cap
being h.

18.7. COMPOSITE BODIES

When a body consists of several parts, each of whose weight and
centre of gravity are known, the centre of gravity of the body can be
found by using the fact that the moment of the resultant weight is
equal to the sum of the moments of the weights of the parts. That is,
taking moments about some suitable axis,

W+ Wy + Wy + -2 )x = Wix, + WoX, + WiXs....
Example 1. A thin uniform wire is bent into the form of atriangle ABC

such that AB = AC = 13 cm and BC = 10 cm. Find the position of
its centre of gravity.

Figure 18.8

From symmetry the centre of gravity of the body lies on 04
where O is the mid-point of BC (refer to Figure 18.8).
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By Pythagoras’ theorem OA = \/AB*> — OB* = 12cm. Hence
the centres of gravity of the rods AB, AC at G, , G, are 6 cm from BC.
Let w be the weight per unit length of the wire.

Body Weight Dlsm}lrc:nffog of
Whole body 36w X
AB 13w 6cm
AC 13w 6cm
BC 10w 0

Taking moments about OB,
36wx =13w x 6 + 13w x 6 + 10w x O
36x =13 x 12
x = 13/3.

The centre of gravity of the wire lies on the median OA distant
4% cm from O.

In many cases work can be simplified by “taking moments” with
numbers proportional to the weights rather than the weights
themselves, for if

(W1 + W2+ W3))—C= Wlfl + szz...

W, W, W - m W,
then X p . X p
Example 2. A right circular cone and a hemisphere are joined so that
their bases coincide. The cone is of height 2a and radius a, and the
density of the material from which it is made is p. The hemisphere is
of radius a and its density is Sp. Find the position of the centre of
gravity of the combined body.

Yp~—2a-—-=e-q- o
|
|

Figure 18.9

From symmetry all centres of gravity will lie on OX (refer to
Figure 18.9).
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The weights per unit volume of the two parts of the body apg
and 5pg respectively.

. Relative | Distance of C of G
Body Weight weights fromOY
Whole body — 6 X
Cone ina?. 2a. pg 1 3 x2a=%a
Hemisphere sna’. Spg 5 2a + 3a = Ra

Taking moments about OY,

6x=1x3a+5x%a
. x =¥

The centre of gravity of the combined body lies on OX distant
244a from O.

When a standard shaped piece is removed from a standard body,
the position of the centre of gravity of the remainder may be found
in a similar manner. The piece removed is (in imagination) restored
and the problem treated by the method of Examples 1 and 2 above.

Example 3. A frustum is cut off from a right circular cone of height
h by a plane parallel to its base and distant %h from it. Show that the
position of the centre of gravity of the frustum is independent of the
semi-vertical angle of the cone, and find its distance from the base.

~

F—h/ 3—ere—2h/3——wm

Figure 18.10

From symmetry all the centres of gravity lie on OX the axis of
the cone (refer to Figure 18.10). G, is two-thirds of the way along
04, and G is two-thirds of the way along OX.

Let w be the weight per unit volume.
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. Relative | Distance of C of G
Body Weight weights fromOY
) 1 2
Whole cone- wgh2 tanZa. h 27 Eh
h? h 2 h 2
Small cone w- —tan’a. - 1 “x-—=-h
39 3 33 9
Remainder — 26 X

Taking moments about OY,
27 x $h = 1 x %h + 26x

8lh=h+ 117x
% = £%h.

The position of the centre of gravity of the frustum does not
depend on a and it is distant £k from its base.

When a body has no line of symmetry, moments can be taken
about more than one axis to fix the position of the centre of gravity.

Example 4. A uniform lamina is in the form of a trapezium ABCD in
which ABis parallel to DC and angle BCD is aright angle. AB = 4 m,
BC = 3m and CD = 7m. Find the position of the centre of gravity
of the lamina.

Vie—3m__A Lm 8
3mg G2
2m-01 l
m
3
D £ C
Figure 18.11

Divide the lamina into a rectangle and a right-angled triangle
as shown in Figure 18.11. Then as G,, the centre of gravity of the
triangle, lies two-thirds of the way up the median from D, its distance
from DY is 2 m. Similarly it is 1 m from DC.

Let w be the weight per square metre of the lamina.

. Distance of C of G
Body Weight from DY | from DC
Whole lamina 33w/2 x y
Rectangle ABCE | 12w Sm im
Triangle ADE 9w/2 2m I'm
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Taking moments about DY,

%vgx—12wx5+97x2
2—46m
11
Taking moments about DC,
332wy—12w><§+97><1
- 15
y=un"

The centre of gravity of the lamina is at a point distant 3}
from BC and {3 m from DC.

Exercises 18b

1. Three equal uniform rods are rigidly jointed to form three sides
of a square of side 2a. Find the position of the centre of gravity
of the body so formed.

2. A thin uniform wire of length 4 m is bent into the shape of a
right-angled isosceles triangle. Find the position of its centre of
gravity.

3. A uniform thin lamina is in the shape of a square of side 8 cm
with an isosceles triangle constructed on one side. The other two
sides of the triangle are 5cm in length. Find the position of the
centre of gravity of the lamina.

4. A uniform solid body consists of a right circular cylinder, of
height 2a and radius g, surmounted by a right circular cone of base
radius a and height 4a. Find the position of the centre of gravity.

Find also, the position of the centre of gravity when the cone is
twice as dense as the cylinder.

5. A uniform solid body consists of a right circular cylinder, of
height | and radius a, surmounted by a hemisphere of radius a.
If the centre of gravity of the body lies on the common base of the

cylinder and cone, show that 2] = aﬁ.

6. A circular lamina of radius 8 cm has a small circular hole
drilled in it. The hole is of radius 2 cm with its centre 4 cm from the
centre of the large circle. Find the position of the centre of gravity
of the lamina.

7. The radii of two circular sections of a uniform solid right
circular cone are a and 2a. Show that the centre of gravity of the
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portion of the cone between these sections divides the join of their
centres in the ratio 17:11. (London)

8. Show that the weight W of a triangular lamina may be replaced
by the weights of three particles each of weight W, one at each
vertex.

Solve Example 4 of Section 18.7 by dividing the lamina into two
triangles and replacing them by suitable particles at their vertices.
Then take moments about two axes at right angles as before.

9. A piece of uniform thin card is in the form of a rectangle ABCD
in which AB = 2a, BC = a. E is the mid-point of CD and the
triangle BCE is folded over, along the line BE, so that C coincides
with the mid-point of AB. Find the distances of the centre of gravity
of the folded card from AD and AB.

10. A uniform steel sheet has a rectangle ABCD marked on it
with AB = 4m, BC = 2m. Points E and F are also marked such
that E is the mid-point of BC and F divides CD internally in the
ratio of 1:3. The piece ABEFD is then cut out. Find the distances
of its centre of gravity from AB and AD.

EXERCISES 18*

1. Particles of weight 2, 3, 4 and 3 units are placed at points whose
position vectors are i + 2j + k, —i + 3j, 3i — 3j + k and j res-
pectively. Find the position vector of their centre of gravity.

2. ABCD is a rectangle in which AB = 10a, BC = 5a. Particles
of weight 3W, W,2W and 4W are placed at A4, B, C and D respectively.
Find the distances of their centre of gravity from AB and BC.

If, now, a particle of weight 5W is added at a point that divides
AC internally in the ratio of 3:2, find the new position of the centre
of gravity.

3. A thin uniform wire AB, 50 cm long, is bent at right angles at
a point C 20 cm from 4. Find the distances of the centre of gravity
of the bent wire from AC and CB.

4. The weight per unit length of a rod AB falls exponentially along
itslength so that at a point distant x from A itis A e~ *. Show that the
centre of gravity of the rod is at a distance

1 —e Xl +1)
1 —e!

from A where [ is the length of the rod.

* The exercises marked thus, T, have been metricized.
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5. Show that the centre of gravity of three equal particles placed
at the vertices of a triangle, coincides with the centre of gravity of
three equal particles placed at the mid-points of the sides.

6. Three particles, each of weight w are placed at the vertices of
a triangle ABC. A fourth particle also of weight w is placed at a
point D so that the centre of mass of the four particles is at A.
Show that the position of D is such that A is the centroid of triangle
DBC.

7. A trapezium ABCD is right-angled at D and the parallel sides
are AB and DC. AB = 6a, CD = 12a and AD = 6b. Find the
position of the centre of gravity of a lamina of this shape.

8. A uniform thin wire is bent into a closed loop consisting of a
semicircle of radius a with its diameter. Find the position of its
centre of gravity.

9. A piece of thin sheet metal is in the form of a rectangle ABCD
such that AB = 18 cm, BC = 12cm. A triangular piece ADE is
cut away where E is the mid-point of DC. Find the position of the
centre of gravity of the remainder.

10. Alaminaconsists of two triangles ABC, A BD fastened together
along AB. The two triangles are of different material but have the
same weight. ABC is an equilateral triangle of side 6a, angle ABD
is a right angle and BD = 6a. Find the position of the centre of
gravity of the lamina.

11. ABCD is a trapezium in which AB = a, DC = b, these being
parallel sides distant A apart. Show that the centroid of the
trapezium is at a distance

a+2b

3a + b)
from AB and lies on the line joining the mid-points of AB and CD.
12. A spherical cavity of radius r is made inside a uniform solid
sphere of radius R, in such a way that the two spherical surfaces
touch at the point P. If G is the centre of mass of the remaining
material, find the distance PG. (J.M.B., part)

13. From a uniform square lamina ABCD of side a is cut a
triangle CDE, with CE = DE. If the distance of E from CD is h,
find the position of the centre of mass of the lamina ABCED.

(Oxford, part)

14. X, y are the coordinates of the centroid of the area enclosed
between the curve y = f(x), the ordinates x = @, x = b and the x-
axis. Show that

b b b b
ff ydx=fxydx and yj ydx=%f y? dx.
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Find the coordinates of the centroid of the area enclosed between
the curve y = x — x? and the x-axis.

15. A uniform square lamina ABCD is folded along the line
joining E, F the mid-points of AB and BC so that the triangle EBF
is at right angles to the plane AEFCD. If AB = 2a, find the distance
of the centre of gravity of the folded lamina from the plane EBF.

16. Prove that the centre of mass of a uniform solid hemisphere
of radius a is at a distance 2a from the centre of its base plane.

A uniform solid right circular cylinder of the same material as
the hemisphere has radius a and height $a; a diameter of one of its
ends is denoted by 4B. The hemisphere and cylinder are joined
so that the plane base of the hemisphere coincides with the end of
the cylinder containing AB. Find the distance from AB of the centre
of mass of the whole solid. (J.M.B,, part)

17. A uniform solid body is in the form of a paraboloid obtained
by revolving the area enclosed by the curve y* = 4ax and the line
x = a about the axis of x. Show that the volume of the body is 2na?®
and find the position of its centre of gravity.

18. A body consists of two uniform solid cones of the same base
radius, fixed base to base. One cone has height h,, density p, ; the
other has height &, and density p,. Find the distance of the centre
of gravity, of the composite body, from the common base of the two
cones.

If the centre of gravity lies on this common base, find the ratio p, :
P2
19. A uniform thin circular lamina of radius 2a is cut along a
line whose distance from the centre of the circle is a. Find the distance
of the centre of gravity of the smaller segment, thus created, from
its straight edge.

20. A cylinder of height h has a right circular conical cavity of
height 2 — ﬁ)h cut from it. The base of the cone coincides with
the base of the cylinder. Find the position of the centre of gravity of
the remaining solid.

21. Find the position of the centre of mass of a uniform solid
hemisphere of radius a. .

Prove that the centre of mass of a uniform hemispherical shell,
whose inner and outer radii are a and b, is at a distance

3@+ b)(a®> + b?)
8 a’+ab + b?

from the centre and deduce the position of the centre of mass of a
thin hemispherical shell. (London)
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22. The centroid of the whole surface (including the base) of a
solid right circular cone coincides with its centre of gravity. Find the
semi-vertical angle of the cone.

23. ABCD is a piece of thin plywood of uniform density in the
form of a trapezium, BA being parallel to CD and each being
perpendicular to BC. AB=a, BC=b and CD = ¢. Find the
distances of the centre of gravity of the plywood from BC and from
AB.

The edges AB and CD are to be reinforced by thin strips of metal,
each strip being uniform. Prove that this can be done without alter-
ing the centre of gravity of the plywood if the densities of the strips
are in the ratio

clc + 2a):a(a + 2c). (London)

24. A right circular cone of height \/§r and radius of base r has a
sphere of the largest possible size cut fromit. Find the position of the
C of G of the remainder.

25. A uniform hemisphere, of radius 2a, has a right cylindrical
hole of radius a bored through it. The axis of the hole coincides
with the axis of symmetry of the hemisphere. Find the position of the
centre of gravity of the remaining body.

26. A uniform paper collar has the shape of the curved surface of a
frustrum of a right circular cone. The radii of the top and bottom
sections of the frustrum are 3 cm and 43 cm respectively and the
planes of these sections are 2 cm apart. Find the position of the
centre of gravity of the collar. (London, part)}

27. Prove that the centroid of a uniform solid right circular cone
of height h is at a distance th from the centre of the base.

From the base of such a cone a right circular conical portion of
height h,(<}h), and with radius of base equal to that of the given
cone, is hollowed out. The top conical portion, of height +h, of the
given cone is cut off. Find the distance between the centre of the base
of the original cone and the centroid of the remaining solid.

(London)

28. Find the position of the centre of mass of a thin hemispherical
shell of mass m and radius a.

The density p at a distance r from the centre of a non-uniform solid
sphere of mass 2M and radius a is given by the formula p = po(l —
r?/a®) where p, is a constant. The sphere is divided into two equal
parts by a plane through its centre. Find the centre of mass of either
hemisphere. (London, part)
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19
ROTATION ABOUT A FIXED AXIS

19.1. EQUATIONS OF MOTION OF A RIGID BODY
ROTATING ABOUT A FIXED AXIS

In Section 16.3 it was shown that for a system of particles
d.%(r x P) = d{Z{a.(r x mp)]}/dt,

i.e., that the moment of the external forces about an axis is equal to
the rate of change of angular momentum about that axis. From this
relation the equation of motion for rotation about a fixed axis can be
derived. However, we obtain it below from first principles.

Consider a rigid body rotating about a fixed axis and in particular
a constituent particle A, of mass m, distant r, from the axis.

Figure 19.1

Figure 19.1 shows a section through A perpendicular to the axis
of rotation and cutting it at 0. Then, since A moves in a circle
centre O, the resultant force P on it must lie in this plane making an
angle a say with OA.

Since P = mf, we have that perpendicular to 04

P sin o = mr(d?6/ds?).
rPsin o = mr?(d*6/dt*)
pP = mr¥(d?6/ds?)

[where p is the perpendicular distance from O to the force P.]
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KINETIC ENERGY OF A ROTATING BODY

Now the force P is at right angles to the axis of rotation and hence
the quantity pP is the moment of P about this axis (refer to Section
3.10). Summing over the whole body

%(pP) = Z[mr3(d20/d:?)].

But d26/d¢? is the same for each particle in a rigid body.
Y(pP) = (Tmr?) d?6/dr?,

or L =l

L is the sum of the moments of the external forces about the axis
of rotation (the internal forces occur in equal and opposite pairs
and do not affect the sum). o = d*6/d¢? is the angular acceleration
of the body about its axis.

I = Tmr? is called the moment of inertia of the body about the
given axis. It is a measure of both the mass of the body and its
distribution about the axis.

19.2. KINETIC ENERGY OF A ROTATING BODY

Consider a rigid body rotating with angular velocity @ about a
fixed axis ON. Let m be the mass of a constituent particle, located
at 4, whose position vector with respect to the origin O is a.

The velocity of 4 is given by v = @ x a.

N

-—

3n

o}

Figure 19.2

K.E. of particle = i{mv?*[v? = v.v = v?]

— N N

m(® x a)?
mw20A4?sin® 0 [refer to Figure 19.2]

= imw?r?

[where r is the perpendicular from A4 to the axis ON].
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Total K.E. of the body = Zimw?r?.
Since w? is independent of the position of 4 in the body,
total K.E. = 0?Zmr?,

We again have the quantity I = Zmr?, which is the moment of
inertia of the body and which first arose in Section 19.1. Before
proceeding further we shall consider moments of inertia in detail.

19.3. CALCULATION OF MOMENTS OF INERTIA

Considering the body as a continuous distribution of matter, the
mass of the constituent particle m is replaced by ém and

I = lim Zr? ém
s

m— 0

=fr2dm

where the integration is taken throughout the whole body.

SI unit of moment of inertia .. . kg m>.

Example 1. Find the moment of inertia of a thin uniform rod, of
mass M and length 2a, about an axis through its centre perpendicular

to its length. .
- —— — ( — — ———— g — —-—
dx

Figure 19.3

Take the centre of the rod as the origin, Ox along the rod, Oy
perpendicular to the rod (refer to Figure 19.3). The mass per unit
length is M/2a.

Consider a length dx of the rod distant x from O, its mass ém is
0x.M/2a

moment of inertia of elemental piece = dxMx?/2a
moment of inertia of the rod about Oy = f (Mx?/2a) dx

= (M)2a)[x*/3]%,
= Ma?/3.
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The moment of inertia can be written as M(a/\/g)2 and, in general,
moments of inertia can be written as Mk?, where M is the mass of
the body. The quantity k is known as the radius of gyration. The
moment of inertia of the body is the same as if the whole of its
mass had been concentrated at a distance k from the axis of rotation.

Example 2. Find the radius of gyration of a thinrod AB, of length |,

about an axis through one end A perpendicular to its length. Its mass
per unit length being k(1> — x2), where x is the distance from A.

k _______ o -
Figure 19.4

om = dx k(I* — x?) [refer to Figure 19.4]

moment of inertia = dx k(> — x?)x?
1
*. moment of inertia of rod = f k(I — x*)x? dx

)

= k[(I*x?/3) — (x°/5)]6

— 2kI%/15 )
1 !

The mass of the rod = f dm = f k(> — x?)dx

0 0

= k[I’x — x3/3]}

ie. M = 2kl%/3. oo (i)
From equations (i) and (ii),
moment of inertia = MI?/5

radius of gyration = I/,/5.

Example 3. Find the moment of inertia of a circular hoop, of mass M
and radius a, about an axis through its centre perpendicular to its plane.

ém

Figure 19.5
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Since the whole of the hoop lies at a constant distance a from the
axis (refer to Figure 19.5),

moment of inertia =J‘dma2 = azfdm = Ma>.

Suppose two sets of particles, set A and set B, have moments of
inertia I ., I ; about the same axis. Then the moment of inertia I of
the combined set about the same axis is given by

I =X mr? + Zgmr?,
I = IA + IB'

In general, I'=1,+1Ig+ Ic+ ---. For a continuous body where
oI is the moment of inertia of a typical element,

I =1lmZXdl = fdl.
Thus moments of inertia may be added provided they are about

the same axis. This fact is used in the examples that follow.

Example 4. Find the moment of inertia of a thin uniform circular disc,
of mass M and radius a, about an axis through its centre perpendicular

to its plane.

Figure 19.6

The mass per unit area is M/na’. The disc can be divided by
means of concentric circles into circular rings. Consider one of these
rings, thickness dx, radius x (refer to Figure 19.6).

Its area = 2nx dx.
its mass = 2mwx dxM/na’.
Its radius is x. Therefore, by the result of Example 3,
SI = 2nx dxMx?/na?

a
moment of inertia of the lamina = f 2nx>M/na* dx
0

47a
= M2n/na® [Xf]
4 Jo

= Ma?)2.
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Example 5. Find the moment of inertia of a thin uniform hollow sphere,
of mass M and radius a, about a diameter.

Figure 19.7

Let the centre of the sphere, O, be the origin of coordinates and
the diameter be Ox. Divide the shell into circular rings by planes
perpendicular to Ox (refer to Figure 19.7). The radius of a typical
ring will be y and its slant thickness a 66.

area of a typical ring = 2nya d6.

The mass per unit area is (M/4na®). .. the mass of a typical ring is
2nya 50(M /4na®) and by the result of Example 3,

the moment of inertia of a typical ring I = (2nya 60M /4na?)y?
=1

moment of inertia of the shell = f (Qny*aM/4na*) do

=0
which, since
y = asin 0,

= f (2na* sin® OM/4na?) dO

0

2 n
=Mz“ f sin® 0 do

0

Ma? 2
2 3

2
= M; (—cos 0)§

f sin #d0 (by reduction formula)
0

= 2Ma?/3.
355



ROTATION ABOUT A FIXED AXIS

Exercises 19a

1. Find the radius of gyration of a rod, of length 6 m, about an
axis through one end of the rod 4 and perpendicular to the rod.
The mass per unit length of the rod is (12 — x) kg/m, where x m is
the distance along the rod from A.

2. Find the moment of inertia of a thin uniform rod, of mass M,
about an axis through the centre inclined at an angle 6 to the rod.

3. Four small balls, each of mass M, are rigidly jointed by four
light rods to form a rectangle ABCD, the length of whose sides are
2a and 2b. Find the moment of inertia of the system about

(@) an axis through the centre of the rectangle perpendicular to the
plane,

(b) an axis in the plane of the rectangle perpendicular to the sides
of length 24,

{(c) an axis in the plane of the rectangle perpendicular to the
sides of length 2b,

(d) a diagonal of the rectangle.

4. Find the moment of inertia of a rectangular lamina, of mass M
and sides 2a and 2b, about an axis in the plane of the rectangle
passing through its centre (a) perpendicular to the sides of length 2a,
(b) perpendicular to the sides of length 2b.

5. Find the moment of inertia of the following bodies each
assumed to be of mass M :

(a) A thin hollow cylinder radius a about its axis.

(b) A homogeneous solid cylinder radius a about its axis.

(¢) A homogeneous solid sphere radius a about a diameter.

(d) A circular annulus inner and outer radii a and b, respectively
about its axis.

(e) A lamina in the form of an isosceles triangle height h, base 2a
about the axis of symmetry.

6. A thin circular disc, of radius 0-2 m and weight 0-5kg, has
two small weights of 0-02 kg at the opposite ends of a diameter.
Find the moment of inertia about an axis through the centre
perpendicular to the plane of the disc.

7. Find the moment of inertia of a cube, of mass M and side 2a,
about an axis through its centre parallel to one of its edges.

19.4. PARALLEL AXIS THEOREM

We have so far calculated moments of inertia for axes through the
centre of mass. These results can be extended to give moments of
inertia about parallel axes to those through the centre of mass.
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PARALLEL AXIS THEOREM
THEOREM

If the moment of inertia of a body, of mass M, about an axis
through its centre of mass is Mk?, then its moment of inertia about
a parallel axis distant a away is M(k*> + a?).

New Old
axis axis
Figure 19.8

Let om be a typical element of the body and p and p’ the per-
pendiculars from dm to the axis through the centre of mass G and
a parallel axis respectively (refer to Figure 19.8).

Then pP=p+ta
' M1 about the parallel axis

- fM (p)? dm

=f (p + a)?>dm
M

=f pzdm+2f p.adm+f a’dm
M M M

= Mk? +2a.f pdm+a2J dm.
M M

Now [ p dm/{ dm gives the position vector of the centre of mass, and,
since the axis goes through the centre of mass, this is zero

2a.J~ pdm=0
M

M1 about a parallel axis = Mk? + Ma?
= M(k* + a®).
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Example 1. Find the moment of inertia of a rod, of mass M and
length 2a, about an axis perpendicular to the rod through one end.

By the result of Example 1, Section 19.4, the moment of inertia
about a parallel axis through the centre of mass is Ma?/3 and the
distance to the parallel axis is a. Therefore, by the parallel axis
theorem, the required M1 is

a* 4a®
M|~ +a*| = M—.
( 3 ) 3

Example 2. Find the moment of inertia of a solid homogeneous
cylinder, of mass M, radius of base a and height h, about a diameter of
its base. Deduce the moment of inertia about a parallel axis through
the centre of mass, given that the moment of inertia of a circular disc
about a diameter is mass x (radius)?/4.

Axis

of rotation
R
a

Figure 19.9

~ The mass per unit volume is M/rna*h. Consider the cylinder
divided into elemental circular discs by planes parallel to the base.
Let PQ (refer to Figure 19.9) be a typical disc width dx distant x
from the axis.

Volume of the disc = na? dx
mass of the disc = na? dxM/na*h
= M dx/h.

The moment of inertia of a circular disc about a diameter is
mass x (radius)?/4. Therefore, by the parallel axis theorem, the
moment of inertia of the disc about the required axis is

H 2
mass x [(frad;us) + xz]
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PERPENDICULAR AXIS THEOREM FOR A LAMINA
M1 of elemental disc = Mdx[a?/4 + x*]/h

h 2 2
Total M1 of the body = f Mﬂ‘;f_x)
0

— M{(a*x)/4 + (x*/3)]b/h
= M((a*h)/4 + (B*/3))/h
= M[(a*/4) + (h*/3)]).

dx

If Mk? is the moment of inertia of the cylinder about a parallel axis
through the centre of mass, and since the distance between the

axes is h/2, then
MUK? + (h/2)*] = M[(a%/4) + (h*/3)]
Mk* = M[(a?/4) + (h*/12)].

19.5. PERPENDICULAR AXIS THEOREM FOR A LAMINA

Another useful theorem which can be applied to laminas but not
solid bodies is the following: Given that the moments of inertia of
a lamina about two perpendicular axes in its plane are I, and I.
If the two axes meet at O then the moment of inertia of the lamina
about an axis through O perpendicular to the plane of the lamina

is I+ Ig.

Figure 19.10

Let OA, OB be the two given axes in the plane of the lamina and
OC perpendicular to the plane of the lamina (refer to Figure 19.10).
Consider a constituent particle of mass m at a point P, where OP = r.
The moment of inertia of the lamina about OC (I} is

Ic = Emr* = Sm(PQ? + PR?)
= EmPQ? + EmPR?
IC = IA + IB'
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Example. By the result of Question 4, Exercises 194, the moments
of inertia of a rectangular lamina, sides 2a, 2b, about axes in the
plane of the lamina passing through the centre and perpendicular
to the sides are Ma?/3 and Mb?/3. By the perpendicular axis
theorem the moment of inertia about an axis through the centre
perpendicular to the plane of the lamina is Ma?/3 + Mb?/3 =
M(a* + b%)/3.

19.6. MOMENTS OF INERTIA OF STANDARD BODIES

The valuesofthe moment of inertia inseveral cases can beremembered
by Routh’s Rule which states that: the moment of inertia I of a
solid body about an axis of symmetry is given by

 — Mass [sum of squares of perpendicular semi—axes]‘

3,4o0r5

The divisor to be 3, 4 or 5 according as the body is rectangular,
elliptical (or circular) ellipsoidal (or spherical) respectively.
For a circular disc radius a about a diameter

I = M[(a* + 0)/4] = (Ma?)/A.

For a rectangular lamina sides 2a, 2b about an axis through its
centre perpendicular to its plane

I = M[(a® + b?)3].

The following results are given for the purpose of quick reference.
They apply to bodies of uniform density and mass M. Moments of
inertia about other axes may be calculated by means of the Parallel
Axis Theorem and (in the case of laminas) by the Perpendicular
Axes Theorem.

Body . . Axis Moment of inertia
Dimensions
(all uniform) (through the centre of mass) | M = mass of body
Rod length 2/ perpendicular to rod MI2/3
Rectangle length 2/ perpendicular to the MI?/3
length 21
Circular disc radius a a diameter Ma?/4
Sphere radius a a diameter 2Ma?/5
Hollow sphere radius a a diameter 2Ma?/3
Solid cylinder radius a the axis Ma?/2
Hollow cylinder radius a the axis Ma?
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Exercises 19b

1. Find the moment of inertia of a uniform circular disc (mass M,
radius a) about a tangent.

2. By means of the perpendicular axis theorem, find the moment
of inertia of a circular ring about a diameter.

3. Find the moment of inertia of a cube (mass M, edge 2a) about
a line through its centre perpendicular to one face. By means of
the parallel axis theorem, find the radius of gyration of the cube
about one edge.

4. Show that the moment of inertia of a rectangular lamina
(mass M, sides 2a and 2b) about an axis through one corner parallel
to a diagonal is 14(M/3)[(a*b?)/(a® + b?)).

Find the perpendicular distance from the centre of the rectangle
to the axis, and deduce the moment of inertia of the rectangle about
a diagonal.

5. Use Routh’s Rule to find the moment of inertia of (a) a sphere
about a diameter (b) an elliptical lamina about its major and minor
axes.

6. Show that the square of the radius of gyration of a solid cone,
height h, radius of base a, about an axis through the apex parallel
to a diameter of its base is 34%/5 + 3a?/20.

7. Use the result of Question 6 to deduce the square of the radius
of gyration of a cone about a diameter of its base.

8. Find the moment of inertia of a solid cone, of mass M and
radius of base a, about its axis.

9. A governor consists of three solid metal spheres each of radius
0-02 m and mass 20 kg. Their centres rotate in the same plane in a
circle of radius 0-15 m about a vertical axis. Find the moment of
inertia of the three spheres about the axis.

10. A uniform circular plate, of radius a, has a mass M. A hole
of radius a/5 is punched in the plate, the centre of the hole being a
distance of 3a/5 from the centre of the plate. Find the moment of
inertia of the plate about (a) a diameter through the centre of the
hole, (b) a line through the centre of the disc perpendicular to its
plane.

19.7. UNIFORM ANGULAR ACCELERATION

Referring back to Section 19.3, we have that for a rigid body rotating
about a fixed axis
L =1Iu

where L is the sum of the magnitude of the moments of the external
forces about the axis, a is the angular acceleration and I is the
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moment of inertia about the axis. If L is constant, then « is constant
and since

(idgt = o (const.) D)
w=a + C.

If o = wg,whent =0, wy = C.
w=w,+ at

de
a=a)o+(xt

c 0 = wet + 3ot* + D.
If0 =0,whent=0,D =0
0 = wot + Fat?.

Also from (i),

df dow _
dirdg ~ *®
. dw _
ie. g =@
tw?> =ab + E.

Now when 8 = 0, w = wq
12
E = 305
t0? = af + tw}
w? = w3 + 2ab.

Summarizing these results we have that, for a body rotating with
constant angular acceleration «,

W = wy + at
0 = wet + Fat?
w? = w§ + 2a0.

These equations should be compared with those summarized in
Section 3.3 for a body moving with constant linear acceleration f.

Example 1. A flywheel is subject to a constant torque which imparts
a constant angular acceleration of 1 1ad/s?. After 2 min it attains full
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speed. It then moves uniformly for 11 min, after which it is brought
to rest by a constant retarding force. If the flywheel rotates through
3600 rad while it is being brought to rest, find its maximum speed,
its angular retardation and the total number of revolutions it makes.

Let o be its maximum angular speed.
First part of the motion:
w=wqy+ at
=0+1x 120
= 120rad/s

0= wet + %octz

=0+ 3% x1x 1207 = 7200rad
Second part of the motion:
The acceleration is zero,
0 = wot + 3at?
=120 x 660 + 0 = 79200 rad
Third part of the motion:
The angle turned through is 3 600 rad
since w? = wi + 2a0,
0= 120> + 2.a.3600
o = —2rad/s.

Total angular distance 90 000 rad

Total number of revolutions = 90 000/27%.

Example 2. A uniform circular wheel, of mass 4-8 kg and radius 0-5 m,
rotates under the action of a constant couple about a fixed axis through
its centre perpendicular to its plane. In 12 seconds the speed of
rotation increases from 15 rev/min to 33 rev/min. Find the moment of
the couple on the disc and the increase in kinetic energy of the disc.
The moment of inertia of the flywheel is given by
I = Ma?/2
= 48 x (0-5)%/2
= 0-6kgm?
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Applying L = I« about the axis of rotation,

L = 0-6a

o = L/06
and if the couple L 1s constant, « is constant so that

W= wo + ot
33 x 27/60 = 15 x 2r/60 + (L/0-6)12,

giving L = 3n/100 Nm.

The increase in kinetic energy is

(w3 — w}) = 30-6[(33 x 27/60)> — (15 x 21/60)?]
— 106 x 4n2/60%[33% — 157]
= 306 x 47%/60% x 48 x 18
= 2887%/1 000 J.

Example 3. A uniform disc, of mass m and radius a, is free to rotate
without friction about an axis through its centre perpendicular to its
plane. One end of a light string is attached to a point on the circum-
Serence of the disc and part of the string is wound on the circumference.
The other end carries a particle of mass 4m which hangs freely. If the
system is released from rest, find the angular acceleration of the disc
and the speed of the particle after the disc has turned through an angle
Oradians. Assumethat part of the string is wound on the circumference
of the disc throughout the motion.

T’r
T

t4mg
Figure 19.11

Let T be the tension in the string and « the angular acceleration of
the disc. Therefore aa is the acceleration of the particle (refer to
Figure 19.11).
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The tension T in the string acts on the disc and has a moment Ta
about the axis of the disc.
For the disc L = I« about its axis

Ta = m(a*/2)a
. T = maaj2. e Q)
For the particle P = Mf
4mg — T = 4maa. ... (ii)
Substituting from equation (i) in equation (i),
4dmg — maa/2 =4man
8g = 9aa
o = 8g/%a.

Since this acceleration is constant, the angular speed w of the wheel
is given by

w? = wi + 2a8

@? =0+ 2.(8g/9a)0

4 /g0
T3 oa
The speed of the particle is
4 /g0
aw = ag —:1—
= 4/3,/agb.

Exercises 19¢

1. A flywheel has a moment of inertia of 1 kg m? about its axis.
It starts from rest under the action of a constant couple L and
reaches a speed of 30 rev/min in 10s, find L.

2. A flywheel moves with a uniform angular acceleration. In the
third and fourth seconds afterwards, it rotates through 70 and 94
revolutions respectively. Find its initial angular speed and its
angular acceleration.

3. A wheel is rotating with an angular speed of 130rad/s. It is
subjected to a constant retardation of 6 rad/s. Find the time taken
to complete 600/z revolutions.

365



ROTATION ABOUT A FIXED AXIS

4. Adiscincreasesitsspeed of rotation uniformly from 600 rev/min
to 2100 rev/min in 2-5s. Find the angular acceleration and the
number of revolutions made in this time.

5. A uniform circular flywheel of mass 64 kg and radius 1 m starts
from rest and rotates under the action of a constant couple. After
making 400 revolutions its angular speed is 40rev/s. Find the
moment of the couple.

6. A uniform disc (of mass km, radius a) is free to rotate without
friction about an axis through its centre perpendicular to its plane.
Oneend of a light string is attached to a point on the circumference of
the disc and part of the string is wound round the circumference. The
other end of the string is pulled with a force mg. The disc starts from
rest. Find the length of string which unwinds from the disc in time ¢.

7. A flywheel has a light string coiled round its axle. The string is
pulled with a force of 40 N until 40 cm of the string has unwound.
The string then slackens and drops off and the flywheel is found to
be rotating at 8/n times a second. Find the moment of inertia of
the flywheel.

8. A flywheel is rotating about its axis at 210 rev/min. It is acted
on by a constant frictional couple and after 20 seconds it is rotating
at 60 rev/min. Find how many more revolutions it will make before
it is brought to rest. If the moment of the couple is 3 N m, find the
moment of inertia of the flywheel.

9. A wheel and axle has a moment of inertia of 4 kg m? rotating
about its axis of symmetry. It is subject to a frictional couple of
015N m. A light string is wound several times around the axle
which has a radius of 6 cm. To the free end of the string is attached
a weight of 3kg. The system is released from rest. How long will it
take for the weight to drop 1 m?

10. A wheel and axle has total mass M and radius of gyration k,
it is free to rotate about its axis. The radii of the wheel and axle
are a and b respectively. Masses m, m’ (m > m') are suspended by
means of light strings wound round the circumference of the wheel
and axle respectively. The strings are free to unwind without
slipping and their tensions have opposite turning moments on the
system. If the system is free to move, show that the mass m has an
acceleration of ga(ma — m'b)/(ma* + m'b* + Mk?).

19.8. EQUATIONS FOR SIMPLE HARMONIC MOTION
(Compound Pendulums)

In the previous section we considered the equation of motion,
L = I, when L was constant. L can vary in many ways, one is when
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it varies as @ the angle turned through and L = —k#0 (k a positive
constant). The equation of motion is —k6@ = lo.

d20 k

- 20
o de? I

which can be written
d?8/dt* = —n?%0 oL@

which is the equation of simple harmonic motion (refer to Section
5.6). In a similar manner to that section, if @ = d6/dt

(d6/dr) . (dw/d8) = —n?0
wdw/dg = —n?0
to? = —in?0% + C.
If o = 0, when 0 = 0y, C = 31203

w? = (63 — 67)

w = n /(03 — 69 ... (i)
ie. do/dt = n /(02 — 6%)

dé
f ———\/(—95—‘92) = f ndt
sin~ 1 (0/0y) = nt + ¢
0 = By sin (nt + ¢). ... (iii)
If in this equation we increase t to ¢t + (2n/n),
0 = 6, sin [n(t + 27n/n) + €]
= Oy sin (nt + &)
which, as in Section 5.6, gives the periodic time
T = 2n/n. .. (iv)
Differentiating equation (iti)

dé
w=a=00ncos(m+s) e (V)
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ROTATION ABOUT A FIXED AXIS
Summarizing we have

d%0
If = —n?
iz n“6

o =n/(03 — 6

0 = 0y sin (nt + ¢)

T = 2xn/n

w = Ogn cos (nt + &)
Example 1. A rigid body of mass M is rotaiing under gravity about a
horizontal fixed axis. (This system is known as a Compound Pendu-
lum). The distance of the centre of gravity G from the axis is h and the

radius of gyration of the body about an axis through G parallel to the
fixed axis is k. Show that the period of small oscillations is

2n/[(k* + h*)/hg].

R

\
/dzomz
A Mg

Figure 19.12

Consider the vertical plane through G, the centre of gravity
cutting the axis at right angles in O, then OG = h. Let A0 be the
vertical through O and / AOG = 6. Then, by the parallel axis
theorem, the moment of inertia about the axis through O is M(k? +
h?). Taking moments about O (refer to Figure 19.12) since

L=Ia
Mghsin 0 = — M(k? + h?)d20/d:>.

The negative sign occurs because the torque is in the direction of 6
decreasing
d?0 gh

- @y psn?
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EQUATIONS FOR SIMPLE HARMONIC MOTION

If @ is small, sin 8 = 0

&0 _ _[_gh |,
der k2 + T

Comparing with d26/dr*> = —n20, we have n = /[gh/(k* + h?)],
and the body oscillates with simple harmonic motion of period
2n/(k* + h*)/gh. A simple pendulum of length / has the period
271\/%. Therefore, by comparison, the body has the same period of
oscillation as a simple pendulum of length [ = (k*> + h*)/h known as
the simple equivalent pendulum.

Example 2. A uniform solid sphere of radius 28 cm is pivoted about a
horizontal axis distant 14 cm from its centre. A particle P, whose
mass is one-third that of the sphere, is attached to the surface of the
sphere at its lowest point. If P is now pulled aside so that the diameter
through P makes an angle of 10 degrees with the downward vertical
and is released, find (a) the time taken till it makes 5 degrees with the
vertical, (b) the maximum angular speed acquired.

Mg Mg/3
Figure 19.13

Let the vertical plane through P and the centre of the sphere C
meet the horizontal axis 0. Referring to Figure 19.13, the moment of
inertia of the sphere about Q is (by the parallel axis theorem)

M(24a%/5 + 0C?) = M[(2(0:28)%/5 + (0-14)*].

Therefore, the moment of inertia of the sphere and the particle
about O is given by

MI2(028)%/5 + (0:14%)] + M{(0-42)%/3
= M[6(0-28)* + 15(0-14) + 5(0-42)2]/15
= M(0-14)%[24 + 15 + 45]/15
— M(00196 x 28)/5
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ROTATION ABOUT A FIXED AXIS
Taking moments about O and since L = Ia,
Mg(0-14) sin 0 + (Mg/3)(0-42) sin 6 = — M(0-0196 x 28/5) d*6/d¢*
d?¢ —(5 x 028 x 98) .
— = in 6
dt (00196 x 28)
= —25sin 6.

Now if 6 is small sin 6 = 6
d20/de® = —256.

Referring back to our summary of equations for simple harmonic
motion, and comparing with d26/dt? = —n?6, we have that n = 5.

C. 0 = 0, sin (5t + ¢).
Whent =0,0 =0, = 10° x n/180 = /18
7/18 = /18 sin (¢)

S e =n/2
and 0 = (n/18) sin (5t + =/2)
when 0 = 5° = 1n/36 radians

7/36 = (n/18) sin (5t + (n/2)
L 5t + (n/2) = n/6 or Sn/6.
Hence 5t = n/3.
t = (n/15)s.
To find the maximum angular speed we use the equation
w = n /0 = )
which is a maximum when § = 0

Hence Omax = h0g

= 5.(n/18) rad/s.

Example 3. A uniform rod AB, of mass M and length 2a, is smoothly
hinged to a fixed point at one end A. The other end B is attached to a
light elastic string (modulus Mg/2, natural length a) connected to a
point C vertically below A. If CA = 4a, find the period of small
oscillations about a vertical line through A.
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EQUATIONS FOR SIMPLE HARMONIC MOTION

Figure 19.14

Referring to Figure 19.14 since § is small

AB + BC = AC thus BC =2a = AB
and f=¢

..()
The moment of inertia of the rod about A is
M(a?/3 + a?) = $Ma
The tension in the string is given by
_ extension
original length
BC —a
= %Mg( p )
By the cosine rule
BC = ,/(4a® + 16a* — 16a® cos 6)
— 2a/(5 ~ 4cos B)
T %Mg[zam ~ “]. .. (i)

Taking moments about A (refer to Figure 19.14),
Mgasin 0 + Tdasin ¢ = —%$Ma? d%6/ds>.

Therefore from equations (i) and (ii)

- —_ 2
Mgasin0+%Mg|:2aV G-t “]4asin0= ~$Ma2 0.
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ROTATION ABOUT A FIXED AXIS
For small oscillations sin § = 6 and cos 8 = 1,

gat + 3gl(2a — a)/aldad = —%a” d26/ds?
- 3g0 = —%a d26/ds?
ie. d%0/dt? = —(9g/4a)0

which is the equation of simple harmonic motion. Hence, the

period
T = 2n/./(9g/4a)
= (4n/3)\/(a/g).

In the case of a simple pendulum T = 2x./l/g and the length I of the
simple equivalent pendulum is given by %./a/g = \/% thus
I = 4a/9.

19.9. REACTION AT THE AXIS OF A ROTATING BODY

Consider a rigid body, of mass M, rotating about a fixed axis under
the action of a system of forces. Let the plane through G, the centre
of gravity, meet the axis in 0. Let OG = h, OA be the initial line in
the plane and /_A0G = 6.

If Mk? is the moment of inertia of the body about a parallel axis
through G (the centre of gravity), the moment of inertia about the
axis of rotation is M(k? + h?). Taking moments about O,

dze
de?
where L is the sum of the moments about the axis. Now by the
result of Section 16.2, the centre of gravity moves as if it were a

particle of mass M acted on by all the external forces on the system
(including the reaction at the axis)

L = M(k* + h?) .. (@)

*P=M d’r
T de?
where 7 is the position vector of the centre of gravity. Equating
components

TP, = M(d*x/dt?) N 1Y)
P, = M(d*y/dt?) ... (iii)
2P, = M(d*z/dt?). e i)
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REACTION AT THE AXIS OF A ROTATING BODY

These four equations [three in the case of motion in two d1mens1ons]
enable us to find the reaction at the axis.

Example. A thin uniform rod AB, of mass m and length 2a, is free to
rotate in a vertical plane about a horizontal axis at A. A mass2m is
attached to the end B. The rod is held horizontal and released. Find
the reaction at the axis when the rod makes an angle 0 with the down-
ward vertical.

Let R, the reaction at the axis, have components X and Yalongand
perpendicular to the rod whose centre is C.

Figure 19.15

Let G be the centre of mass of the rod 4B and the attached particle
at AB. Then G divides CB in the ratio 2:1 so that AG = 5a/3 (refer
to Figure 19.15).

Taking moments about 4, we have

3mg . (5a/3)sin 0 = —1(d20/d¢?). ()
The moment of inertia of the system about the axis through 4 is
m((a®/3) + a?) + 2m(2a)® = 28ma?/3. ... (i)

Therefore, from equations (i) and (ii),
Smgasin 0 = —(28ma?/3)(d20/dt?)
d?0/dt? = —(15g/28a)sin . ... (iii)

Since G describes a circle about O, the components of its acceleration
along and perpendicular to the rod are respectively, 5a(d6/dr)?/3 and
5a(d?6/dt?)/3. The total mass of the system is 3m. Resolving along
AB,

3m . (5a/3)(d6/dt)* = X — 3mg cos 0 )
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ROTATION ABOUT A FIXED AXIS
Resolving perpendicular to 4B,
3m .(5a/3)(d%0/dt?) = Y — 3mgsin @ e (W)
From equations (ii1) and (v),
Smal(—15g/28a)sin ) = Y — 3mgsin 0
Y = 9mg sin 6/28. ...-(a)
Integrating equation (iii),
4(d0/dt)?> = C + 15g cos 0/28a.
But df/dt = 0 when 8 = n/2, . C = 0. Substituting in equation
(iv),
Sma(15g cos 6/14a) = X — 3mgcos 0
X = 117mg cos 6/14. ....(b)

It is interesting to note that the horizontal component of the reaction
at the axis

X sinf — Ycos 8§ = 117mg cos 0 sin 6/14 — 9mg sin 0 cos 0/28
= 225mg sin 26/56

which is a maximum when sin 26 = 1, i.e. 0 = 45 degrees.

Exercises 19(d)

1. A rod AB, of negligible weight and length 6a, has two weights
2m and 3m attached at B and C respectively, where AC = 4a. Itis
free to rotate in a vertical plane about a horizontal axis through A.
Find the period of small oscillations.

2. If, in Question 1, the rod 4B had Been held horizontally and
released, find the components of the reaction at the axis when the rod
made an angle 6 with the downward vertical.

3. A uniform solid cylinder, of mass M and radius q, is free to
rotate with one of its generators as axis. If the axis is horizontal and
the cylinder makes small oscillations under gravity, find the length
of the simple equivalent pendulum.

4. A uniformrod of mass, 0-3 kg and length 1 m, is free to rotate in
a vertical plane about a horizontal axis distant 0-1 m from one end.
A mass of 4 kg is attached to the other end. Find the length of the
simple equivalent pendulum.

5. Three uniform rods AB, BC, CA {each of mass m, length 2a)
are rigidly jointed to form an equilateral triangle ABC. The system
can rotate freely about a horizontal axis through A perpendicular
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to the plane of the rods. Find the length of the simple equivalent
pendulum for oscillations of the system about the axis through A.

6. A uniform rod, of mass 10 kg and length 2-5 m, has a uniform
circular disc of radius 25 cm, mass 100 kg, rigidly attached at its
centre to one end of the rod. The rod is free to rotate in a vertical
plane about a horizontal axis through the other end, find the period
of small oscillations.

7. A compound pendulum has radius of gyration k about an
axis through its centre of mass. It rotates about a parallel axis
making small vertical osciilations. Show that, if the position of this
axis is chosen to make the period of oscillation a minimum, then
the length of the simple equivalent pendulum is 2k.

8. Aheavy uniform rod (of mass m, length a) has a mass mattached
at one end. Itisfree to rotate in a vertical plane about a horizontal
axis through the other end. (a) Find the period of small oscillations
about the axis. (b) If the rod is slightly disturbed from the position
where the mass is at its highest point, find the reactions at the axis in
the subsequent motion.

9. A circular disc (radius a, mass m) is free to rotate in a vertical
plane about its centre O, which is fixed. A point P on the rim is
attached by a light elastic string (modulus kmg, natural length a/2) to
a point Q in the plane of the disc vertically below 0. If 0Q = 2a,
find the period of small oscillations of the system.

10. A rigid body can rotate about a horizontal axis. The verti-
cal plane through the centre of mass G meets the axis in O and
OG = h. By the result of Example 1, the period of oscillation is

2n./[(k* + h*)/hg], where k is the radius of gyration of the body
about a parallel axis through G. If OG is extended to C where
OC = (k* + h*)/h show that if the body oscillates about a parallel
axis through C, its periodic time is unaltered.

11. A uniform rod 4B, of mass m and length 24, is smoothly
hinged to a fixed point at 4. A particle of mass 2m is firmly attached
at B. A light elastic string, of modulus mg and natural length q,
joins B to a point C vertically below 4. If CA = 4a and the system
performs small oscillations in the vertical plane containing 4 and C,
find the length of the simple equivalent pendulum.

19.10. ENERGY METHODS

We have seen in Section 16.4 that the principle of work can be
extended from a single particle to a set of particles so that:

Final K.E. — Initial K.E. = Work done by forces on particles.
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ROTATION ABOUT A FIXED AXIS

Hence it applies to a rigid body and, since the internal forces are in
equal and opposite pairs acting at points close to one another, we need
only consider the work done by external forces.

Example 1. A uniform thin ring of radius a is free to rotate about a
horizontal axis perpendicular to the plane of the ring through a point O
on the ring itself. P is the opposite end of the diameter through O. | f
OP is held horizontal and then P is projected downwards with speed u,
find its speed when OP is first vertical.

p'\o
— 4]

I P
!
!

B mg

V a—

Figure 19.16

The moment of inertia of the ring about a perpendicular axis
through G is ma? (m being the mass of the ring) (refer to Figure 19.16).

Hence its moment of inertia about the axis through O ism(a* + @)
= 2ma? (using the parallel axis theorem).

Applying the principle of work between 4 and B,

1(w? — w}) = Work done by weight (R does no work).

2 2
o e
giving v=u® + 4ga

In some problems it is more convenient to determine the work
done from the moment of the forces (or couples). Taking moments
about the axis of rotation we have

L = lwdw/d0.
Integrating with respect to 8 from 6 = 0, to 0 = 0,

02 w2
f Ld0=1f wdw
61 w]

02
f Ldo = 3(w? — o).

0,
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Hence fgf L d@is equal to the increase in kinetic energy and must be
the work done by the external forces producing the moment L.
If these forces have constant moment L, then

02
Ldg = L(02 - 01),

8

i.e. work done is moment of the forces x angle turned through. This
result will apply in particular to a couple of constant moment G. The
work done by such a couple will be GO where 8 is the angle through
which it turns.

Example 2. A constant force, of magnitude F,is applied to the circum-
Sference of astationary circular flywheel of mass 200 kg and radius 1 m.
After 25 revolutions, the flywheel is rotating with an angular speed of
1 rev/s. Find the magnitude of F.

R

200g N
Figure 19.17

The moment of inertia of the flywheel (refer to Figure 19.17)

= Ma?/2

=200 x 12/2

= 100 kg m?.
. The work done by F as the wheel makes 25 revolutions (= 50nrad)
® moment of F x angle turned through = (F x 1)50x.

The weight and reaction acting at the centre O do no work. Hence
by the principle of work,

Final K.E. — Initial K.E. = Work done
310027y — 0 = F x 50m
F = (100 x 47%)/(2 x 50m)
F =4nN.
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ROTATION ABOUT A FIXED AXIS

Example 3. A uniform rod AB, of mass m and length 2a, can turn
freely in a vertical plane about a horizontal axis through its centre O.
Particles of mass 3 m and 4 m are attached at A and B respectively.
The system is released from rest in a horizontal position. Find its
angular speed when it is vertical.

3mgs M Af
|
At R
an A
!
l,:
T
' -l '
4
3mg :i, @ Lmg
il
)
i
l* B’
v
Lmg
Figure 19.18

The moment of inertia of the rod about the axis O is ma?/3, and of
the two masses at A and B, 3ma? and 4ma* respectively. Therefore
the total moment of inertia of the system is 22ma?/3.

In the vertical position the net work done by gravity is
4mga — 3mga (vefer to Figure 19.18) i.e. mga.

Final K.E. — Initial K.E. =-Work done

1. 22ma*(w? — 0)/3 = mga
w? = 3g/lla.

w = /(3g/11a)rad/s.
Exercises 19(e)

1. A uniform rod, of mass 3 m and length 2a, is free to rotate in a
vertical plane about a horizontal axis through one end 4. A massm
is attached to the other end B. The system is released from rest ina
horizontal position. Find its angular speed about A when vertical.

2. A wheel, whose moment of inertia about its axis is 100 kg m?,
makes Srev/s. It is brought to rest after 20 seconds by a constant
couple. Find the magnitude of the couple.

3. A uniform circular disc, of mass m and radius g, can rotate in a
vertical plane about a horizontal axis through a point O on its
circumference. The disc is held with the diameter OA4 through O
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IMPULSIVE MOTION ABOUT A FIXED AXIS

horizontal and then rgleased. If a constant frictional couple mga/2n
opposes the motion, find the speed of rotation about the axis when
OA is vertical.

4. A uniform circular disc, of mass m and radius @, can rotate in a
vertical plane about a horizontal axis through A (a point on the
circumference of the disc). AB is a diameter of the disc. At B is
rigidly attached, by its centre, a rod of length 64, mass 3m/2. The
rod is atright angles to AB and in the plane of the disc. The system is
released from rest with AB vertical and B uppermost. If at any
subsequent time t, AB makes an angle § with the upward vertical,
find an expression for 0.

5. A circular disc, of mass m and radius aq, is free to rotate in a
vertical plane about a horizontal axis through a point 4 on the
circumference of the disc. A particle B, of mass km, is attached to the
disc at the opposite end of the diameter through A. The system is
slightly disturbed from a position of rest with B vertically above A.
Show that the speed v of the particle when passing through the lowest
point is given by (3 + 8k)v? = 32ga(l + 2k).

6. A uniformrod AB, of mass 3m and length 24, can turn freelyin a
vertical plane about a horizontal axis through its centre O. Particles
of mass 2m and 3m are attached to the rod at A and B respectively.
The system is released from rest with the rod horizontal, and on
passing through the lowest position the heavier particle falls off.
Find the angular speed of the rod when it subsequently passes
through the horizontal position.

7. Arod AB, of mass m and length 2a, is free to rotate in a vertical
plane Il about its end A. A light elastic string, modulus mg/4,
original length 2a, is attached to a point C on the same level as 4 in
the plane I1. The other end of the string is attached to the end B of
the rod. The rod is released from rest in a position where / BAC =
60 degrees. Find the angular velocity of the rod when passing
through the lowest point if AC = 2a.

19.11, IMPULSIVE MOTION ABOUT A FIXED AXIS

When impulsive forces act on a rigid body, we have very large
forces acting over a very small interval of time. During this time
comparatively small forces such as weight and frictional couples can
be ignored. We have, for the equation of motion about the fixed
axis,

L=1Iu

or L = I(dew/dp).
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ROTATION ABOUT A FIXED AXIS

Integrating with respect to t over our small time interval

j Ldtzf Idw
t “]

1

t2
L5}

Now L = XpF and over our small time interval, F, though varyingin
magnitude, acts along a constant line of action, hence p is constant

det - f(zpF)dt

5[ ool
= 2(pf th)

= 2pJ

where J is the impulse of the force F (refer to Section 13.2). Thus
equation (i) becomes
XpJ = lw, — 1w,

and once again, since the internal impulses will occur in equal and
opposite pairs, the summation can be taken over the external forces
only. This equation is equivalent to the statement that, the sum of
the moments of the external impulses about the axis is equal to the
increase of angular momentum.

Example 1. A thin uniform rectangular lamina ABCD can rotate
freely about the line AB which is horizontal. The mass of the lamina
is 0-5 kg and BC = t m. Animpulseof 4 N s is applied to the mid-point
of CD in a plane at right angles to the lamina. Find the angular speed
of the lamina immediately after the blow.

Force diagram Velocity diagram
Figure 19.19
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IMPULSIVE MOTION ABOUT A FIXED AXIS

Let X be the magnitude of the reaction of the axis and w the
instantaneous angular speed of rotation about AB (refer to Figure
19.19). Since the moment of the external impulses about the axis is
equal to the increase of angular momentum, taking moments about
AB to eliminate X

4 x 1 = mk*w.

For a rectangle about one edge k? = 4a%/3.
Therefore in this case k? = 4(3)%/3 = ¢

4x1=05x4iw

w = 24 rad/s.

Example 2. Arod AB, of mass m, and length 2a, can turn freely about a
horizontal axis through A. It is hanging vertically at rest with B
below A. A horizontal impulse Iis givento therod, at adistance x from
A. Show that, if x = 4a/3, there is no impulsive reaction at the axis,
and in this case, find the initial kinetic energy given to the rod.

A > A
4 X w4
! h w |
! ) a
| X |
[ |
20 g | va—i|G X
| et —1 e o
| |
I
v | lov
B
Force diagram Velocity diagram

Figure 19.20

Let X be the impulsive reaction at the axis. Since 7 is horizontal,
then X will be horizontal. Also let w be the instantaneous angular
speed of rotation about A. Referring to Figure 19.20

Speed of G v =aw )]
and since

impulse = change in momentum,
I — X = mlaw — 0)

[ — X = maw. .. (1)
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Also
the moment of the impulse = change of angular momentum.
Taking moments about A (to eliminate X),
Ix = mk’*w — 0.
For a rod about one end k* = 4a?/3.
I = 4ma*w/3x. RN (1]
From equations (ii) and (iii)
X =1—maw
= dma*w/(3%) — maw
= mawl(4a/3x) — 1)
S X =0, if 4a/3x=1
re. if x = 44a/3.
Thus, when AC = 4a/3, there is no impulsive reaction at the axis
and C is known as the centre of percussion.
When X = 0, equation (ii) becomes
I = maw
w = I/ma. ce.-(iv)
The motion of the rod is one of rotation about the axis at A4.
K.E. = imk?*w?
= %mizzwz
2ma® I?

3 mPa?

= 212/3m.

(from equation (iv))

Exercises 19(f)

1. A uniform rod, of mass 4 kg and length 2 m, lies at rest on a
smooth horizontal surface. An impulse of 8 N s is applied at one
end in a direction making an angle of 30 degrees with the rod. Find
the kinetic energy created by the blow.

2. Auniformrod, of mass M, has an impulse applied at right angles
to one end. If the other end begins to move with speed v, find the
magnitude of the impulse.

3. Aisa point on the rim of a uniform circular disc, centre O, lying
at rest on a smooth horizontal surface. An impulse J is applied at A
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which causes A4 to move with speed v, in a direction making an angle
0 with AO. Find the magnitude and direction of J.

4. A solid body, of mass m, is free to rotate about a horizontal
axis. A perpendicular plane IT passes through G (the centre of
gravity of the body) and meets the axis in a point O, where OG = h.
The body is given a horizontal impulse of magnitude I whose line of
action lies in the plane I1. Iis at right angles to OG and meets OG in
the point X where OX = x. Show that the initial angular speed
about the axis through O is Ix/m(k? + h?), where k is the radius of
gyration of the body about an axis through G parallel to the axis of
rotation. Find R the magnitude of the impulsive reaction at the
axis and show that if x = (k* + h?)/h [the length of the simple
equivalent pendulum (refer to Section 19.7)] then R = 0.

5. A uniform rod, of mass m and length 2a, which is free to rotate
about a horizontal axis through a point distance x above its centre,
hangs in equilibrium. It is given a horizontal impulse at a point
distance x below its centre. If there is no impulsive reaction at the
axis, find x.

6. A square lamina, of mass m and length of side 2a, is free to
rotate, with its plane vertical about a horizontal axis through one
corner A. An impulse I is given to the lamina at the diagonally
opposite corner when it is hanging in equilibrium. If I is in the
plane of the lamina and in a horizontal direction, find the kinetic
energy imparted to the lamina.

7. A uniform rod, of mass m and length 2aq, is free to rotate in a
vertical plane about a horizontal axis through A. It is released from
rest in a horizontal position. Find its angular speed when passing
through the vertical position. At this moment a horizontal impulse
I is applied to the centre of the rod which reverses and halves its
angular speed, find the magnitude of 1

8. A uniform circular lamina, of mass m and radius a, is free to
rotate in a vertical plane about a horizontal axis through a point P on
its circumference. It is released from rest with the diameter through
P horizontal and is brought to rest by a small fixed inelastic peg
distant a vertically below P. Find the impulsive reaction at the
moment of impact.

EXERCISES 19*

1. Find the moment of inertia of a solid hemisphere (radius q,
mass M) about a diameter of its plane face. Deduce its moment of
inertia about a tangent at the vertex.

* Exercises marked thus, f, have been metricized.
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2. A uniform circular disc, of mass 49 kg and radius 0-5 m, can
turn freely about a fixed axis through its centre of mass perpendicular
to its plane. A constant couple of 0-2 kg m acts on the body in a
plane perpendicular to the axis of rotation. Find the time taken for
the speed of rotation to increase from 4 to 20rad/s and the angle
turned through in this time.

3. A light inextensible string passes over a pulley of radius a and
moment of inertia ma®/2. Masses 2m and m are attached to the ends
of the string. Find the acceleration of the masses if a constant
frictional couple G acts on the wheel.

4. A uniform circular disc centre O of mass M and radius a, is
free to turn in a vertical plane about a horizontal axis through its
centre. A particle (of mass m) is attached to a point P on its circum-
ference, and PO makes an angle o with the upward vertical. The
system is released from rest. Find the angular speed of the disc as it
passes through the lowest point.

5. Show that the moment of inertia of a hollow sphere (density p,
external and internal radii R and r respectively), about a diameter
is 8mp(R> — r)/15.

6. Show that the moment of inertia of a uniform straight rod of
mass M about an axis (a) through the centre perpendicular to therod,
and (b) through one end perpendicular to the rod is the same as the
moment of inertia of three particles, one of mass 2m/3 in the centre
of the rod, and one of mass m/6 at each end of the rod. [This is an
example of two systems whose moments of inertia about all axes
are equal. They are known as equimomental systems.]

7. Four rods each of mass m and length 2a, are rigidly jointed at
their ends to form a square. The system makes small oscillations
in a vertical plane about a horizontal axis through the mid-point
of one side. Find the length of the simple equivalent pendulum.

8. A circular disc, of mass m and radius g, is free to rotate in a
vertical plane about its centre O which is fixed. Two light elastic
strings AB, CD each of modulus kmg and original length a/2, are
attached one to each end of a diameter BOC of the disc. The other
ends of the string are attached to two points 4 and D in the plane
of the disc on the same horizontal level as 0. AO = 2a = OD.
The system is slightly disturbed from its position of stable equilib-
rium. Find the time of small oscillations.

9. A circular cylinder, of mass m and radius g, is free to turn about
its axis which is horizontal. A light inextensible string is wound
around the cylinder its free end is attached to a freely hanging
mass m. The string unwinds not slipping on the cylinder. Find
the tension in the string when the system is moving.
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10. Two particles, of mass 2m and m, are connected by a light
inextensible string passing over a rough circular pulley of mass m
and radius a. The pulley is free to turn about its axis. Find the
acceleration of the particles, assuming the string does not slip on
the pulley.

11. Twelve equal rods, each of mass m and length 24, are rigidly
jointed together to form a cube. Find the moment of inertia of the
cube about a line through its centre parallel to one of the rods.

12. CD is a uniform rod of mass m and length 2a. It is rigidly
jointed at right angles at C to the mid-point of a similar rod AB.
The system makes small oscillations in a vertical plane about a
horizontal axis through a point P on AB, where AP = a/2. Find
the length of the simple equivalent pendulum.

13. A rod AB s free to rotate about a horizontal axis through 4.
It is given simultaneously two parallel impulses of magnitudes I and
J in a direction perpendicular to AB. I acts at the mid-point of the
rodand J at B. If there is no impulsive reaction at the axis through A4,
find the ratio I:J.

14. A uniform straight rod mass m has the same moment of inertia
about all axes as three particles, one of 2m/3 at its centre and two of
m/6, one at each end of the rod. [Equimomental Systems.] Deduce
that a uniform parallelogram mass M is equimomental with:a
particle of mass 4M/9 at its centre of mass, four particles each of
mass M/36 at the vertices, and four particles each of mass M/9 at the
mid-points of the sides.

15. Two particles of mass 4m and 3m are connected by a light
inextensible string passing over a rough circular pulley (of mass 2m
and radius a). The pulley is free to turn about its axis. Find the
accelerations of the particles assuming that the string does not slip
on the pulley.

16. A circular lamina, of mass m, radius a and centre O, rotates
in a vertical plane about a horizontal axis through a point P on
its circumference. The axis is perpendicular to the plane of the
lamina. A particle, of mass m, is attached to the lamina at a point
B on the diameter through P, where PB = 3a/2. Show that if, at
any time t, PO makes an angle 6 with the downward vertical, then
3ab* — 4g cos 0 is constant. By differentiating this equation with
respect to t, or otherwise, find the length of the simple equivalent
pendulum.

17. Find the moment of inertia of a triangular lamina (mass M,
perpendicular height h) about a line through the vertex parallel to
the base. Hence by the parallel axis theorem, find its moment of
inertia about the base. Verify that both these results are the same as
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the moments of inertia of three particles each of mass M/3 situated
at the mid-points of the sides of the triangle.

18. Find the moment of inertia of a uniform solid right circular
cone of mass M, height hand base radius r, about (a) the axis, (b) a line
through the vertex parallel to the base.

If these results are equali, show that r = 2k and that the minimum
moment of inertia about a line parallel to the base is 51Mh?/80.

(London)

19. If in Question 16 the particle of mass m is removed from the
circular lamina, show that the length of the simple equivalent
pendulum is unaltered.

20. Four thin rods each of mass m, length 2a are rigidly jointed
to form a square ABCD. The system can swing in its own plane
about a horizontal axis through A, the diagonal AC never rising
above the horizontal. Show that the magnitude of the resultant
reaction on the axis varies between 8mg/5 and 44mg/5.

21. A lamina is in the form of a trapezium whose parallel sides
are of lengths a and b and are at a distance h apart. If the mass of
the lamina is M, use the equimomental system for a triangular
lamina (refer to Question 17) to find its moment of inertia about the
side of length a. )

22. A uniform cube of edge 2a is placed with one edge AB on a
perfectly rough plane. The cube is in unstable equilibrium with the
diagonally opposite edge to AB in the same vertical plane as AB.
If the cube is gently pushed, find its angular speed when one of its
faces hits the plane.

23. A wheel consists of a circular disc of radius a with four circular
holes each of radius a/4. The centres of the holes form a square and
each centre is distant a/2 from the centre of the disc. If mis the mass
of the wheel after the holes have been punched in it, find the moment
of inertia of the wheel about its axis.

A light elastic string of modulus mg and original length 8a/9 is
connected at one end to a point P on the circumference of the wheel
and at the other end to a point Q. If Q is in the plane of the wheel and
OQ = 3a where O is the centre of the wheel, find the time of small
oscillations of the system about its equilibrium position.

24. A thinuniformrod AB, of mass m and length 2a, has oneend 4
resting on a rough horizontal plane. The rod is gently disturbed
from the vertical position and rotates about the end 4 which begins
to slip when the rod makes an angle of 45 degrees with the vertical.
Find the coefficient of friction between the rod and the plane.

25. A uniform rod of length 20 m is held on a horizontal table
perpendicular to one edge. 14 m of the rod projects over the edge.
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The rod is allowed to turn about the edge of the table. If 4 = 0-61,
show that the rod will begin to slip when it has turned through an
angle tan~ ! 025

26. A uniform circular disc is of mass M and radius a. Find its
moment of inertia about a horizontal axis perpendicular to its plane
which passes through a point O on the rim of the disc.

The disc is freely pivoted about this axis and is held with the
diameter through O horizontal. It is then released. Find the
horizontal and vertical components of the thrust on the axis when
the disc has turned through an angle 6.

Hence or otherwise, show that the total thrust on the axis has
Mg as a minimum and $Mg as a maximum value. {London)

27. A rigid body can turn freely about a fixed axis through its
centre of gravity and the moment of inertia of the body about this
axis is I. A constant couple of magnitude N acts on the body in a
plane perpendicular to the axis of rotation. Find (@) the time taken
for the angular velocity of the body to increase from w; to w;
(b) the angle through which the body rotates in this time.

A uniform circular disc of mass 20 kg and radius 2 m rotates, under
the action of a constant couple, about a fixed axis through its centre
perpendicular to its plane. If the speed of rotation changes from
10 rev/min to 35rev/min in 15 seconds, find the moment of the
couple on the disc.

Find also the angular acceleration and the number of revolutions
made by the disc in this time. (London)t

28. A non-uniform rod 4B of length 8z has mass M and can
swing freely in a vertical plane about one end A. The radius of
gyration of the rod about A4 is 6a and the distance of its centre of
mass from A is 5a. When the rod is hanging in equilibrium, it is
struck by a horizontal impulse of magnitude I at a point P distant
5ta from A. If in the subsequent motion the rod just reaches the
upward vertical, prove that I = TM./5ag/3.

29. A point P movesin a circle of radius r and centre O. The angle
between OP and a fixed direction is denoted by 6. Prove that the
tangential and normal components of the acceleration of P are
rd?0/dt* and r(d0/dt)? respectively. (In your proof do not assume
any known expressions for these components.)

A uniform rough rod of mass m and length 2a is freely pivoted to
a fixed point at its centre O. A small ring of mass m is threaded on
the rod, and the rod and ring are released from rest with the rod
horizontal and the ring distant r (<a) from 0. The inclination of the
rod to the horizontal is denoted by 0. Show that, before the ring slips,

(@® + 3r?)(d6/dt)*> = 6grsin 9,

387



ROTATION ABOUT A FIXED AXIS

and find d?6/dt* in terms of 6. Show that the ring will slip when

0 reaches the value given by
2

ua
tanf = 5——
a* + 9r?
where p is the coefficient of friction between the ring and the rod.

(J.M.B.)

30. A uniform rod of mass m and length 24 lies on a smooth
horizontal table and is rotating freely in the plane of the table about-
one end O which is fixed. The rod strikes a particle of mass m
at rest at a distance x from O, whereupon the particle acquires a
speed u. Find the impulsive reaction at O and show that this reaction
vanishes if x = 4a/3.

If the particle adheres to the rod on impact and there is no
impulsive reaction at O, find what fraction is lost of (@) the angular
velocity of the rod (b) the kinetic energy of the system.  (London)

31. A uniform circular lamina, of radius a and mass m, is free to
rotate about a tangent which is fixed in a horizontal position. It is
released from rest with its plane horizontal and is brought to rest
by an inelastic peg fixed at a distance g, vertically below the point
of contact of the tangent. Find the impulsive reaction at the moment
of impact.

32. Arectangular closed box ABCDPQRS is made from a uniform
sheet of metal. The ends ABCD and PQRS are squares of side a and
the length of the box is 2a. Two adjacent sides APQB and APSD
are removed and the remainder, which is of mass M, can rotate
freely about AP which is horizontal. Find (a) its moment of inertia
about AP (b) the period of small oscillations. (London)

33. Find the moment of inertia of a uniform circular disc about
an axis through its centre perpendicular to its plane.

A light inextensible string is connected at its ends to two particles
of masses m, and m, (m; > m,) and passes over a uniform circular
pulley of mass M which can rotate freely about a fixed horizontal
axis through its centre. The particles hang freely and the system is
released from rest. If the pulley is sufficiently rough to prevent the
string slipping, find the acceleration of either particle.

Show that the motion is identical with that obtained by neglecting
the inertia of the pulley and increasing the masses of the particles
by equal amounts. (London)

34. Prove that the period of small oscillations of a rigid body
moving under gravity about a smooth fixed horizontal axis is
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where M is the mass of the body, I its moment of inertia about the
axis and A the distance of its centre of mass from the axis.

Three equal uniform rods AB, BC, CD, each of mass m and length
2a, are rigidly joined together at B and C so as to form three sides
of a square, and the whole can rotate freely about a horizontal axis
through A4 perpendicular to the plane of the rods. Find the moment
if inertia of the system about the axis of rotation and the period of
small oscillations about that axis.

(Proofs of formulaerelating to moments of inertia are not required.)

(J.M.B)

35. A piece of heavy uniform wire of mass M and length 20a is
bent in the form of an isosceles trapezium ABCD in which the equal
sides BC and AD are each of length 5a and CD is of length 8a. Prove
that the moment of inertia of the wire about an axis through N, the
mid-point of CD, perpendicular to the plane of ABCD is 149Ma?/15.

The wire is freely suspended so that it can oscillate in a vertical
plane about the same axis through N. Calculate the period of small
oscillations about the position of stable equilibrium. (London)

36. A uniform circular disc mass M can rotate freely about its
axis which is horizontal. A light inextensible string is wrapped round
the circumference of the disc, one end being attached to the disc
the other supporting a freely hanging particle P of mass m. The
system is released from rest. Find, by the principle of conservation
of energy, the speed of P when it has fallen a distance d, and the
tension in the string.

37. Four uniform rods each of length 2a and mass m are rigidly
jointed together at their ends to form a square ABCD. The system
can rotate freely about a horizontal axis through 4 perpendicular
to the plane of ABCD. The system is gently disturbed from its
position of unstable equilibrium with C vertically above A. Find its
angular speed when C is vertically below A.

38. Find the moment of inertia of a uniform rod 04 of mass m
and length 2a about an axis through O perpendicular to the rod.

Therod is free to rotate in a vertical plane about a fixed pivot at O.
A particle of mass 2m is attached to the rod at 4 with 4 vertically
above O and the system is slightly disturbed from its position of rest.
Show that when the rod makes an angle 6 with the downward

vertical
14a6? = 15g(1 + cos 6)
and find the speed of the particle when it reaches its lowest point.
At this point the particle drops off. Show that A subsequently
rises to a height 6a/7 above the horizontal plane through O.
(London)
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MOTION IN TWO DIMENSIONS

20.1. GENERAL EQUATIONS OF MOTION

A rigid body may be considered as a collection of particles rigidly
joined together. In Sections 16.2 and 16.4 we saw that the motion of
a system of particles (of total mass M say) may be considered in
two parts:

(a) a translational motion, the centre of mass G moving as if it
were a particle of mass M under the action of the external forces;

(b) a rotational motion about G, depending on the sum of the
moments of these external forces.

Hence, to investigate the motion of a rigid body, we shall apply
P = mf at G and, for two-dimensional motion, L = Ia about an
axis through G.

Example 1. A sphere, of mass M and radius a, is rolling down a plane
which is inclined at an angle o to the horizontal. Find the acceleration
of the centre of mass and show that for rolling p > 2 tan o/7 where u
is the coefficient of friction.

R

M
= 9

(Force diagram) (Acceleration diagram)

Figure 20.1

Refer to Figure 20.1.
Applying P = mf at the centre of mass G,

along the plane Mgsina — F = Mx* oM
* Dots are a conventional way of indicating differentiation with respect to time, thus
o dx o d%x . d% .
X =—, X ==, =— etc
dt dr? dr?
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perpendicular to the plane Mgcosa — R = 0. ... (1)
Taking moments about the C.G., L=Ix
Fa = ME?*0. ... (iii)

There are four unknowns %, §, F, R and one other equation is
required, this is found from the geometry of the body. Since it is
rolling without slipping,

X = af
% = af. i)

From equations (iii) and (iv), since k* = 2a*/5 for a sphere rotating
about a diameter,

F=3Mx ....(a)
Substituting in equation (i)
Mgsina — 2M% = Mx
X = 3gsina. ....(b)

Therefore the body moves with constant acceleration.
We have assumed that F is large enough to prevent slipping at the
point of contact, that is, F < uR. Hence from equations (ii) and (a)

$MX < . Mg cos a.
Substituting for X from equation (b),
$M3gsin o < Mg cos a.
u = 2tano/7.

If u is less than this value F( = uR) is insufficient to stop the
sphere slipping at its point of contact with the plane. In this case
X # af and equation (i) becomes

Mgsina — uR = Mx.
From equation (ii) R = Mgcosa
X = g(sino — ucosa).
Example 2. A car, of mass M, is moving with speed v around a hori-

zontal circular track of radius r. a is the height of the centre of
gravity assumed to be in a central position above the track, and d, the
distance between the inner and outer wheels. Show that, if v* > grd/2a,
the car will overturn (assume that the force of friction is large enough
to prevent sliding).
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r g ‘)VZ

4
: H

7

F. v

A s

Mg ‘T
I S

Figure 20.2

Figure 20.2 shows a vertical section through the centre of mass G
of the car and the centre of the circle. R and S are the normal
reactions of the ground on the wheels, while F is the total friction
force at the wheels.

Applying P=mf at G,
horizontally F = Mv?/r (@)
vertically R+ S - Mg=0. ... (il

Taking moments about G, L =Ia. Asthereisnorotationo = Qand
Fa + (Rd/2) — (Sd/2)=0
S — R = (2aF/d). ... (i)
The force F, which causes the car to go round in a circle, is provided
when the driver turns the wheels. F hasan outward rotational effect
about G which is balanced by the net inward rotational effect
d(S — R)/2 [refer to equation (iii)] of the reactions. The difference
between S and R produces this effect but R + S is always equal to
Mg [refer to equation (ii)]. As v is increased (or r decreased), the
difference S — R must increase to balance the increased value of
F(= Mv?/r). When § = Mg and R =0, the difference § — R
cannot be increased and any further increase of speed (and hence of
F) turns the car outward.
Subtracting equation (iil) from equation (i1)
2R = Mg — (2aF/d).
Substituting for F from equation (i)
2R = Mg — (2Mav?/rd)
R=0 if Mg— 2Mav?*/rd) =0,

ie. v? = (grd/2a).
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and hence if v > (grd/2a), the car will overturn, assuming that the
coefficient of friction is large enough to prevent sideslip.

In order to overcome the tendency to overturn and/or sideslip
the track can be banked so that no frictional force is necessary to
keep the car moving in a circle. Suppose its inclination to the hori-
zontal is 6 (refer to Figure 20.3) and that there is no tendency to side-
slip when the car is travelling at speed v in a circle of radius r.

R
Mg
. Figure 20.3
Since P = MY,
horizontally (R + S)sin 0 = (Mv?/r) o)
vertically (R+ S)cos8 — Mg=0
(R + S)cos 6 = Mg. R 113

Dividing equation (i) by equation (ii)
tan 8 = (v*/rg).

Example 3. A solid spherical ball, of mass m and radius a, is lying at
the bottom of a fixed, hollow, perfectly rough sphere of radius b (> a).
It is given a horizontal blow such that the initial speed of its centre is v.
Find the ranges of values of v if the ball is not to leave the sphere.

(Force diagram) {Acceleration diagram)
Figure 20.4

393



MOTION IN TWO DIMENSIONS

Referring to Figure 20.4, A and B are the centres of the two spheres ;
AP is the initial line of centres; P’ is the point on the rolling sphere
originally in contact with the fixed sphere at P. Let 6 be the angle
turned through by the line of centres. Let BP’ make an angle ¢ with
the vertical. This is the angle turned through by the rolling sphere
about its own centre and thus its angular acceleration about B is

Since the sphere is perfectly rough, no slipping occurs and

arc CP’ = arc CP (refer to Figure 20.4)

al® + ¢) = bo
ap = (b — a)f
o ad = (b — a)f. ()
Also %= ABO
or %= (b — a)f. oo (i)

For the motion of the centre of gravity of the rolling sphere we have
P = mf. Considering components along and perpendicular to BA

R — mgcos = m(b — a))? ... (iii)
F + mgsinf = —mx N $11)

Taking moments about B applying (L = [a),
Fa = m%a®¢. c (V)

From equations (i) and (v)

Fa = m%az(b — a)ﬁ.

a
F = m¥b — a)f. ....(@)
Substituting in equation (iv)
mi(b — a)f + mgsin@ = —mx
= —m(b — a)f [from equation (ii)].
b — a)[(2/5) + 1] = —gsin 0.
Multiplying both sides of this equation by 26(= 2d6/dr), and

integrating with respect to ¢,

n de
(b - a)%fzéedt = —2gfsin Badt.

b —a)f* = C + 2gcos @ ....(b)
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Now when § = 0,0 = v/(b — a)
(b —a)=C + 2g. oo o)
From equations (b) an (c)
b — a)p* — (b — a) = 2g(cos 6 — 1)
: (b — a)® = v2)(b — a) + 10g (cos 6 — 1)/7. ....(d)

There are two conditions for the ball to remain in contact with the
sphere.

(@) If the centre of gravity of the ball never rises above the hori-
zontal diameter of the fixed sphere : this limiting case is when 6% = 0
for 8 = n/2. Equation (d) becomes

03> v)(b— a) + 2500 — 1),

ie. v < /[10g(b — a)/7).

(b) If the ball has sufficient speed to make complete revolutions
around the inside of the sphere: in this case R > Ofor § = =, that s,
from equation (ii1)

mb — a)0®> + mgcos® =0 forfh =rn
ie. b-—af?=>¢g

substituting for 62 from equation (d) we have

v?/(b — a) + 10g(cos 0 — 1)/7 =g for@ =n
1e. b —a)+ 10g(—2)/T > g
0¥ /(b — a) = 27g/7

v = /[27g(b — a)/7].
Exercises 20a

1. A uniform circular disc is rolling down a plane inclined at an
angle o to the horizontal. Find the least value of p, the coefficient of
friction, which will prevent sliding, and the acceleration of the centre
of the disc.

2. If in Question 1 the disc is replaced by a circular hoop and
o = 30 degrees, what is the value of u and the acceleration of the
centre of the hoop?

3. Alightinextensible string is wound round a circular cylindrical
reel of mass mand radius a. The end of the string is held fixed and the
reel allowed to fall so that the thread unwinds. If the axis of the reel
remains horizontal, find the acceleration of its centre and the tension
in the thread.
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4. A pendulum consists of a rod of mass m tied at one end to a
light inextensible string of length I. The centre of mass of the rod
moves in a horizontal circle of radius r with speed v. Find the angle
the rod makes with the vertical.

5. A motor car is rounding a curve of 40 m radius on a level road.
The distance between the lines of the wheels is 15 m and the centre
of gravity of the car and passengers is -5 m from the ground and
midway between the line of the wheels. Find the maximum speed at
which the car can travel without overturning and the least value of
1, the coeflicient of friction, which will stop sideslip at this maximum
speed.

6. If to the car in Question 5 new tyres are fitted, and thus u is
increased to a value 16, can the car with the same load travel
around the same curve at a higher speed?

7. Show that a cyclist travelling on level ground with a speed vina
circular path of radius r has to lean inwards through an angle 8 from
the vertical where tan 0 = v?/gr.

8. A set of rails in the form of a curve of radius 400 m is banked so
that for a train travelling at 14 m/s round the curve there is no lateral
thrust on the rails. The width between the rails is 1-34 m. Find how
much the outer rail is raised above the level of the inner rail.

9. A reel wound with string is a cylinder, of mass 4m and radius q,
and two discs, each of mass m and radius b(>a). It is placed on a
rough horizontal table and a horizontal force of magnitude 2mg is
exerted on the free end of the string. The reel as it rolls winds up the
string. If the string is perpendicular to the axis of the reel and no
slipping occurs, find the acceleration of the reel.

10. A uniform rod AB, of mass m and length 24, has one end 4
attached by a smooth ring to a horizontal wire. The rod is held
along the wire and allowed to fall. Find the speeds of its ends A and
B when the rod is vertical.

20.2. ENERGY METHODS
In Section 16.4 it was shown that, for a system of particles
Total K.E. = #°Zm + 1Zmv’?,

where 7 is the velocity of the centre of mass and ¢’ is the velocity
relative to the centre of mass, i.e.

total K.E. = K.E. of centre of mass + K.E. relative to centre of mass
Therefore for the case of a rigid body moving in two dimensions
K.E. = $Mv* + Yo
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Example 1. Auniformrod, of mass m and length 2a, is perpendicular to
a smooth horizontal plane with its lower end in contact with the plane.
It is slightly disturbed from this position. Find its angular speed 6 when
it has turned through an angle 8, and deduce the value of 60 when the rod
is horizontal.

Figure 20.5

The forces acting on the rod are its weight mg acting vertically
downwards through G, the centre of gravity, and the reaction of
the ground R acting vertically. Therefore, G moves in a vertical line
AB (refer to Figure 20.5). Thus if the height GA of G above the plane
is x then the speed of G is

% = d(a cos 0)/dt = —asin 60. e (@)
The angular velocity of the rod is 8 s (@)

The work done by R is zero because the point of the rod in contact
with the horizontal plane moves along the plane, i.e. perpendicular
to the direction of R. The work done by gravity as G descends from a
height a to a height a cos 8 above the plane is mg(a — acos ).

Work done = Final K.E. — Initial K.E. (both rotational
and translational)

mga(l — cos 0) = im(x* — 0) + Imk*(0* — 0)
mga(l — cos 0) = ima® sin? 00 + 10°ma’/3
[from equations (i) and (i1}]
6% = 6g(1 — cos ®/a(3sin? 0 + 1).
When the rod is horizontal, 8 = 7/2.
= 6g/4a

and 0 = /(3g/2a).
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Example 2. A uniform sphere (mass m, radius a, centre B) is balanced
on top of a fixed rough sphere (radius 2a, centre A). It is slightly
disturbed from its position of unstable equilibrium and rolls down the
surface of the fixed sphere. If at any time t while the sphere is still
rolling AB makes an angle 8 with the vertical, show that 21a6* =
10g(1 — cos 0). If u is the coefficient of friction between the two
spheres, show that slipping will occur when 2 sin 6 = (17 cos 6 — 10)
(provided that cos 6 > 19).

R 30 6%
Y 306 % 306
{Force diagram)} (Velocity diagram) {Acceleration diagram)
Figure 20.6

Let P be the point of contact of the two spheres. P has two veloci-
ties both perpendicular to AB but in opposite directions, one is 3af
due to the movement of centre B and the other aw due to the move-
ment about B. Since P is stationary,

3a6 = aw
ie. 36 = w. R ()]

Let B’ be the original position of B (refer to Figure 20.6) and BL the
perpendicular to AB’. The frictional force Fand the reaction Rdono
work while the body is rolling, since the point P at which they act is
stationary, thus

Work done = Final K.E. — Initial K.E.
becomes mgB'L = tmv? + smk?w?
ie. mg3a(l — cos 0) = Im(3ab)® + im.%a’w?%
Substituting for « from equation (i),
3mga(l — cos 0) = 4m9a20% + mia?96?
ga(l — cos §) = (3a* + 2a*)6?
21a6? = 10g(1 — cos 6). ... ()
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Differentiating this equation with respect to 0
42a60 = 10g sin 60.
21afl = Sgsin 6. ... (iii)

For the equation of motion of the sphere regarded as a particle of
mass m at B,

P =mf
mgsin® — F = m.3al ... (1)
and mgcos 6 — R = m. 3ab>. W)

Taking moments about B,

Fa = m.%d°0®
From equation (i) F = 6mab/s. (D)
Substituting for F from equation (vi) in equation (iv)

mg sin 0 — 6mab/5 = 3mad,
6 = 5gsin 0/21a. ....(a)

From equations (a) and (vi)

F = 2mg sin /7. ....(b)

From equations (ii) and (v)
Rzg[ﬂcos()—IO]. Q)

After F reaches its maximum possible value uR the sphere will slip.
When F = uR,

2mg sin 6/7 = p(mg/7)[17 cos 0 — 10]
ie. 2sin 0 = u(17 cos 6 — 10)

provided that the spheres are still in contact, i.e. provided R > 0, i.e.
cos f > 19 [from equation (c)].

Exercises 20b

1. A uniform rod of length 2 m is held inclined at 60 degrees to the
horizontal with one end on smooth ground. If the rod is released
from rest, find its angular speed just before it hits the ground. What
path does the centre of mass of the rod follow?

2. A pair of steps consists of two identical ladders hinged at O,
each of length 21. The steps rest on smooth ground held at an angle
of 120 degrees with one another by a light string. If the string breaks,
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find the speed of O just before it hits the ground and the angular speed
of one half of the step ladder.

3. A uniform circular cylinder rolls directly up a plane inclined at
an angle « to the horizontal, its axis being at right angles to the line of
greatest slope. Ifinitially its centre of mass was moving with speed v,
find how far up the plane it goes before coming instantaneously to rest.

4. A solid spherical ball of mass 100 g and radius 5 cm is rolling
without slipping along a horizontal road at 6 m/s. Calculate the
total kinetic energy stored in the ball. Ifit comes to a hill of inclina-
tion sin~ ! () find how far it will roll before coming instantaneously
to rest.

5. A particle is fastened to the surface of a uniform sphere of
radius a. The particle and sphere are of equal mass. The sphere is
now placed on a rough surface with the particle at the highest point
of the sphere. If when the system is released the sphere rolls without
slipping, find the speed of the centre of the sphere when it has turned
through an angle 0.

6. A uniform circular cylinder (mass m, radius b and centre B) is
balanced on top of a fixed rough cylinder (radius a, centre A4). Itis
slightly disturbed from its position of unstable equilibrium and rolls
down the surface of the fixed cylinder. If at any time ¢, while the
cylinder is still rolling, 4B makes an angle 8 with the vertical, show
that (a + b)§? = 2g(1 — cos 6). If u is the coefficient of friction
between the two cylinders, show that slipping will occur when
tan @ = u/(1 + 2p).

7. A uniform circular disc (centre B, mass m and radius b) rolls
on the inside of a fixed hollow cylinder (radius a) whose axis is
horizontal. The plane of the disc is vertical and cuts the axis of the
cylinder in A. If 6 is the angle AB makes with the vertical, find an
expression for 0 given that when the disc is in its lowest position
6 = Q. In order that the disc may make complete revolutions show
that Q@ > /[11g/3(a — b)].

8. Rework Question 10 of Exercises 20(a) using the principle of
work. :

9. In Example 3, Section 20.1, obtain equation (d) by the principle
of work.

20.3. IMPULSIVE MOTION

Regarding a rigid body as a collection of particles rigidly joined
together, the result of Section 16.2.
d’F .
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shows that a force P acting on a rigid body is equal to the product
of the total mass and the acceleration of the centre of mass. Integrat-
ing equation (i) with respect to time we have

ty
J Pdr = M7, — ;).
to
Thus, if Pis an impulsive force, its impulse is measured by the change
of momentum of the whole body, regarded as a point mass at the

centre of gravity. Similarly from Section 16.4, for a single force

d
rxPzaZ(rxmv)

d
rx P= i (angular momentum)

d
= —(A).
dz—( )
Integrating we have
ty
f (r x P)dt = 4, — A,.
to

In the case of an impulsive force the interval of time is small and r
will be approximately constant

t
rxf Pdt=4, — A4y
to

or the moment of the impulse is equal to the change of angular
momentum.

Example 1. A circular disc, of mass m and radius a, is spinning freely
on a smooth horizontal table with angular speed w about its centre O.
The plane of the disc is horizontal. If a point A on its circumference is
suddenly fixed, find its new angular speed about its centre. Also find
the impulse applied at A.

‘ A'
I

(Before) (After)
Figure 20.7
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MOTION IN TWO DIMENSIONS

Let I be the impulse acting when the point A is fixed. It will act
tangentially. Let «’ be the new speed of rotation and v the speed of
the centre O (refer to Figure 20.7). Since the impulse is at 4, the
angular momentum about A is conserved.

2 2

m%w +0= m%w’ + mva.
But v = aw’ (@)
ma*w/2 = 3ma’ew'/2
W' = o3 ... (i)
Also Impulse = change of momentum
I =m

i

macw’  from equation (i)

I = maw/3 from equation (ii).

Example 2. Two equal uniform rods AB, BC, each of mass m, are
freely jointed at B and lie in a straight line on a smooth horizontal
table. The point A is given an impulse of magnitude I at right angles to
AB. Find the initial speeds of the centres of the rods.

v J
w
Ao .
A =B E = C
R
! T
Figure 20.8

Let 2a be the length of each rod. Let G, G, be the centres of AB,
BC. Let oy, @, be the angular speeds of AB and BC respectively
about G, and G,, and v the speed of G, (refer to Figure 20.8) (all
considered immediately after the impact). Let the internal impulsive
reaction at B be of magnitude J on ABand BC. B will have a speed of
—aw, relative to G,

the speed of Bis v — aw; .
B has a speed of aw, relative to G,, i.e. G, has a speed of —aw,

relative to B

the speed of G, is v — aw; — aw,. R 01
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For each rod we shall apply
Impulse = change of momentum at G

and Moment of Impulse = change in angular momentum about G.

Rod AB I+J=m ... (i)
Ia — Ja = m . }d*w,
. I - J = maw,/3. ... (i)
Rod BC —J =m (speed of G,)
from equation (i)
—J =mv — maw,; — maw, .. (i)
Ja = —ima*w?
J = —maw,/3. e (V)
Substituting for J from equation (v) in equations (ii), (iii) and (iv)
I — maw,/3 = mv ....{a)
I + maw,/3 = maw,/3 ....(b)

maw,/3 = mv — maw, — maw,
v =(4aw,/3) + aw,. RN (3
Substituting for v from equation (c) in equation (a)
I — maw,/3 = 4maw,/3 + maw,
. I — Smaw,/3 = maw,. ceen(d)
From equations (b) and (d)
I — Smaw,/3 = maw,; = 31 + maw,
—2I = 8maw,/3.
w, = —31/4ma. co..(e)
Substituting for w, from equation (e) in equation (d)
I — 5ma/3(—31/4ma) = maw,
w, = 91/4ma (D)
and from equation (c)
v = 4a/3(—31/4ma) + a(91/4ma)
= 51/4m ... (g)

403



MOTICN IN TWO DIMENSIONS
which is the speed of G, and from equations (i), (e) (f) and (g)
the speed of G, = v — aw, — aw,
(51/4m) — a.(91/4ma) — a(—31/4ma)
—1/4m.

i

i

Exercises 20c

1. Two particles 4 and B, each of mass m, are joined by a light
rod of length 2a. A is given an impulse of magnitude I at right angles
to AB, describe the motion which follows.

2. Two particles 4 and B, of mass m and M respectively, are
joined by a light rod of length 2a. An impulse I is given at a point
X on the rod and at right angles to the rod. Find an expression for
the kinetic energy of the system after the blow. Find the position of X
if the kinetic energy is to be a minimum.

3. A uniform rod 4B, centre G, mass m and length 2aislyingona
smooth horizontal table. Itis given a horizontal impulse of magni-
tude I perpendicular to the rod at a point X where GX = x. Find
the initial speed of the point X and its position for this speed to be a
minimum.

4. A uniform rod, of mass m and length 2a, lies at rest on a smooth
horizontal surface. It receives an impulse mu at right angles to its
length and applied at a point distant a/2 from its centre. Show that
after a time na/3u, the rod will have turned through a right angle and
find the distance travelled by its centre during this time.

5. A square lamina of mass m and side 2a, is rotating freely in a
horizontal plane with angular speed @ about a perpendicular axis
through its centre of gravity. One corner is suddenly fixed. Find its
new angular speed and the change in kinetic energy.

6. A circular disc (radius a) is rolling with speed V along a rough
horizontal plane. It strikes, perpendicularly, a rough horizontal peg
fixed at a height 2a/5 above the plane. Find the angular speed with
which the disc begins to rotate about the peg.

7. A uniform rod, of mass 4m and length 2a, is lying at rest on a
smooth horizontal table. A particle, of mass m moving with speed v
along the table in a direction perpendicular to the rod, strikes it at
one end and adheres to it. Find the loss of kinetic energy of the
system due to the impact.

EXERCISES 20*

1. A uniform circular lamina of radius a is lying on a smooth
horizontal table. A point on its circumference is given a tangential
* Exercises marked thus, T, have been metricized.
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impulse which starts it moving with a tangential velocity u. Find
the angular speed with which the lamina starts to move.

2. A uniform solid sphere, of radius a, rolls without slipping
directly up a slope inclined at an angle « to the horizontal. If its
initial angular speed is w, find the time taken, the distance travelled
and the number of revolutions made until it first comes to instantane-
ous rest.

3. A uniform rod AB of length 2a lies at rest on a smcoth hori-
zontal table. It is given an impulse at one end A4 at right angles to its
length. It is noted that one point X in the rod remains stationary.
Find the distance AX.

4. A circular cylinder, of radius a, rolls down a rough plane
inclined at an angle « to the horizontal. The centre of mass of the
cylinder is in its axis which is perpendicular to the line of greatest
slope of the plane. Show that the acceleration of the cylinder is
a*g sin a/(a® + k?), where k is the radius of gyration of the cylinder
about its axis.

5. A sphere of radius a can roll without slipping on the outside of a
larger fixed sphere. Ifit is released gently from the top of the larger
sphere, find the angular distance the small sphere moves through
before it leaves the surface of the larger sphere.

6. A uniform cube of side a is placed with one edge in contact with
a horizontal plane. It is slightly disturbed from the position of
unstable equilibrium. Find an expression for w?, where w is the
angular speed of the cube, when one face meets the plane. Consider
the two cases when the plane is (@) smooth, (b) rough enough to
prevent sliding.

7. A rigid body is rotating about an axis through its centre of
gravity. A parallel axis distance h from the original axis suddenly
becomes fixed and the body starts to rotate about this new axis. If w
was the original angular speed and k the radius of gyration about
the old axis, find the new angular speed.

8. Two thin rods AB, BC, each of mass m and length 24, are freely
hinged at the point B. They are placed on a smooth horizontal table
with / ABC = 90 degrees. An impulse of magnitude I is applied at
the end A of the first rod in the direction AB. Find the initial speeds
of the centres of the two rods.

9. A thin uniform rod, of mass m and length 24, lies in a vertical
plane with its ends in contact with two smooth planes, one horizontal
the other vertical. The rod is released from restinclined atan angle o
to the horizontal. Assuming that the rod remains in contact with the
vertical plane, find its angular speed of rotation when it is inclined
at an angle 6 to the horizontal.
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10. A uniform sphere, of radius b and centre B, is balanced on
top of a fixed rough sphere of radius a, centre A. It is slightly dis-
turbed from its position of unstable equilibrium and rolls down the
surface of the fixed sphere. If at any time t while the sphere is still
rolling, AB makes an angle § with the vertical, show that 6% =
10g(1 — cos #)/7(a + b). Also show that the sphere will slip, if
cos 8 > 12, when pu(17cos® — 10) = 2sin 6, where p is the co-
efficient of friction.

11. A uniform rod AB, of mass M and length a, lies on a smooth
horizontal table, with the end 4 smoothly jointed to a point of the
table. A particle of mass m is at B in a smooth groove cut along the
length of the rod. Motion is started in the plane of the table by
giving the system an angular velocity w about 4 and the particle a
speed u towards A. Prove that the particle reaches A4 if

Mu? > a*0w*(M + 3m). (Oxford).

12. Two fixed equal cylinders rotate in opposite directions about
their axes which are parallel and in the same horizontal plane. A
plank is placed symmetrically across the cylinders perpendicular to
their axes and is in equilibrium slipping on the cylinders. The
plank is then pushed a short distance in the direction of its length
and released. Show that it subsequently moves in Simple Harmonic
Motion.

13. Two uniformrods AB and BC each of length 2a and of mass M
are freely jointed at B and lie in a straight line on a smooth horizontal
plane. Animpulse I is applied in this planeat A perpendicular to AB.
Show that the initial speeds of the centres of mass of the rods are in
the ratio 5:1 and find the ratio of the initial angular velocities of the
rods. (London)

14. A uniform rod, of mass m and length 24, lies on a smooth
horizontal table and is rotating freely in the plane of the table about
one end O which is fixed. The rod strikes a particle of mass m at
rest at a distance x from O, whereupon the particle acquires a speed u.
Find the impulsive reaction at O and show that this reaction vanishes
if x = 4a/3. If the particle adheres to the rod on impact and there is
no impulsive reaction at O, find what fraction is lost of (a) the angular
velocity of the rod, (b) the kinetic energy of the system. (London)

15. Prove that the moment of inertia of a uniform solid sphere, of
radius ¢ and mass m, about an axis through its centre is sma®. A
hollow hemisphere, of radius 34, is fixed with its base horizental and
uppermost. A uniform solid sphere, of mass m and radius g, rolls
without slipping on the inner surface of the hemisphere, the motion
of the centre of the sphere being in a vertical plane. Prove that the
motion is identical with that of the bob of a simple pendulum.
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If, instead, the contact between the hemisphere and the sphere is
perfectly smooth, prove that the motion of the centre of the sphere in
a vertical plane is again that of the bob of a simple pendulum and
that the ratio of the lengths of the pendulums in the first and second
case respectively is 7: 5. (London)

16. A uniform circular disc of mass M and radius a lies flat on a
horizontal table with its centre at the origin of coordinates. A
horizontal blow J is applied to the disc at the point (g, 0) in a direc-
tion making an acute angle a with the positive x-axis. If the initial
velocity of a point (x, y) of the disc has components u and v parallel
to the axes of z and y respectively, show that

Jsina

J
u=—(acosa — 2ysina) v = (@ + 2x).
M

a Ma

If the disc begins to rotate about a point on its circumference,
show thata = +30 degrees and that all points which have an initial
speed V lie on a circle of radius MVa/J. (London)

17. A uniform disc, of mass m and radius a, is projected in its own
vertical plane along a rough horizontal table. The initial velocity
of the centre of the disc is ¥ and the velocity of the point of contact is
nV in the same direction. The coefficient of friction between the disc
and the table is u. If the disc ceases to slip on returning to the point
of projection, find the value of n and the greatest distance moved in
the direction of projection.

Show also that the disc will not return to its starting pointifn < 3.

; (London)

18. A uniform rod AB, of mass M and length 2a, has a particle of
mass M attached to the end B. The rod is allowed to fall freely
without rotation and with its length horizontal. When the velocity
of the rod is v vertically downwards, the end 4 engages with a smooth
pivot about which the rod can rotate freely. Find the impulsive
reaction at the pivot.

Find also the least value of v if the rod proceeds to make complete
revolutions about the hinge. (London)

19. Find the moment of inertia of a uniform circular disc of mass
m and radius a about the line through its centre perpendicular to
its plane.

Two such discs are in the same vertical plane, and are free to
rotate in the plane about their centres, which are fixed. A uniform
rod, of mass M and length equal to the distance between the centres,
is smoothly jointed to each disc at a point on its rim, so that, when
it moves as the discs rotate, it remains parallel to the line joining
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their centres. Find the length of the simple equivalent pendulum
as the system performs small oscillations under gravity.  (Oxford)

20. A car is travelling without skidding at 36 km/h round a
circular bend of radius 50 m on a horizontal surface. Show that
the coefficient of friction between the wheels and the road is at
least 3.

Find the angle at which this road must be banked, if the coefficient
of friction is § and the maximum speed at which a car can travel
round the bend without skidding is 72 km/h. (W.JE.C)t

21. A uniform circular cylinder, of radius a and mass M, rolls
without slipping down the rough inclined face of a wedge. The axis
of the cylinder is horizontal and perpendicular to the line of greatest
slope of the inclined face of the wedge. The wedge rests on a smooth
horizontal plane and is prevented from slipping by a force P. Find P
and the angular acceleration of the cylinder in terms of M, a and «
(the inclination of the face).

22. Two thin uniform rods AB, BC, each of mass m and length 2aq,
are freely jointed at B. They lie at rest on a horizontal table with
/_ABC = 90degrees. Ifa horizontal impulse of magnitude I is given
to the system at the point B, show that, whatever the direction of I,
B will begin to move with a speed of 4I/5m (in the direction of ).

23. Three uniform rods AB, BC, CD are freely jointed at Band C.
They lie at rest on a horizontal table forming three sides of a square
ABCD. A horizontal impulse of magnitude [ is given to the system
at the point A, perpendicular to AB and in the direction of AD.
Find the initial angular speeds of the three rods and the reactions at
the joints B and C, given that each rod is of mass m and length 2a.

24. A uniform rectangular lamina, of mass m and with sides of
lengths a and b, lies at rest on a smooth horizontal table. Animpulse
of magnitude I is given to one corner of the rectangle. Find the
magnitude of the greatest angular speed with which the lamina
begins to move.

408



21
EQUILIBRIUM

21.1. GENERAL CONDITIONS OF EQUILIBRIUM

A body is said to be in equilibrium when its centre of mass G is at
rest cr moving with uniform velocity and its angular momentum
relative to G is constant (or zero). This includes the important and
common case of a rigid body at rest.

Consider a body in equilibrium under the action of forces
P, P,,Ps,..., whose lines of action pass through points whose
position vectors are ry,r,,rs,. .., respectively. Since its angular
momentum is constant and its centre of mass has zero acceleration,
we have, from the results obtained in Sections 16.2 and 16.3,

Xrx P)=0 R 1]
ZP=0. R (11

If each force P is resolved in the directions of d, b, ¢ (three non-
coplanar unit vectors), so that P = P;d@ + P,b + P,¢, then equation
(ii) becomes X(P,d + P,b + P;é) =0 or P, =0, TP, = 0 and
XpP;=0.

Thus our general conditions of equilibrium may be stated as
follows:

If a body is in equilibrium then. .. (i) the sum of the moments of
the external forces about any point is zero and (ii) the sums of the
resolved parts of the external forces in three non-coplanar directions
are separately zero.

Conversely, if these two conditions are satisfied, the body is in
equilibrium.

Usually the resolution is carried out in three directions mutually
at right angles, and in the case of coplanar forces it is sufficient that
the sums in two directions are zero.

These relations will be true whatever units of force are used. Asin
Chapter 11, it is convenient to use the weight of unit mass as a
unit of force, i.e. 1 kg wt. 1kgwt. = g N, where g is the magnitude of
the local gravitational constant.
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Example 1. A thin uniform rod AB, of length 4 m and mass 7 kg, is
freely hinged to a wall at A. To the other end B is attached a light
elastic string BC of natural length 2 m, C being fixed at the same
level as A and 5m away from it. If, when released, the rod finally
comes to rest with angle ABC = 90 degrees, find the modulus of the
string. Find also the reaction at A.

7 kg wt.

Figure 21.1

When a body is freely hinged there is no frictional couple at the
hinge, while the normal reaction between the parts of the hinge
may be in any direction. In this case let the reaction of the hinge
at 4 on ABbe as shown in Figure 21.1. Also let the extension of the
string BC in the equilibrium position be x m.

Then in triangle ABC, AC* = AB?> + BC? (Pythagoras), so that
BC =3m and x = 1 m. And, if angle CAB = 0, then sin 6 = 3,
cosf = £.

By Hooke’s law T=21.x/l

T=21.1/2

Taking moments about 4 (anticlockwise positive),

Tx4—Tcosf x2=0. o ()

Resolving,
horizontally Rsing — Tsinf =0 R (1)
vertically Rcoso + Tcos — 7 =0. ... (1il)

Substituting for T and for cos € in (i) gives
Mx4—-Txtx2=0
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or A = 28/5kg wt.
Substituting for T and 8 in (ii) and (iii) gives
Rsin o = 42/25,
Rcoso = 119/25.
Squaringand adding, R* = (%)%(17% + 6%), .. R = 7,/13/5kgwt.
Dividing, tan ¢ = 6/17 and sin « is positive
. o= 19° 26"
The elastic string has modulus 52 kg wt. and the reaction at A is

a force of magnitude %\/1—5 kg wt. acting at 19° 26’ to the vertical.

Example 2. A uniform plank AB, of mass 40 kg and length 6 m, rests
horizontally on two supports C and D. AC = 2m and CD = 3 m.
If a man weighing 80 kg stands at the centre of the plank, find the
reactions at C and D.

How far can the man walk towards the end B of the plank without

overturning it? Find the reactions at C and D when it is about to
overturn.

Ny Ny N
Gu--X-14
A ﬁ% a8 A B
ct G 15} cl %)
80 kg wt. }
L0 kg wt, L0kgwt. 80 kg wt.
{a) (b)
Figure 21.2

Since the weights of the man and the plank are vertical, the
reactions at C and D must also be vertical.

Consider first the case when the man stands at the centre of the
plank (refer to Figure 21.2a).
Taking moments about C

N, x3-120x1=0.
Vertically

Nl + N2 - 120 = O
giving N, = 40, N, = 80kgwt.

Now let the man walk a distance x towards B until the plank
begins to tilt. At this point the plank begins to lose contact with the
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supportat C so there will be no reaction there (refer to Figure 21.2b).
Taking moments about G,

N x2—-80x=0
vertically, N —-120=0.
giving N =120kgwt. and x =3m.

When the man stands at the centre the reactions at C and D are
80 and 40 kg wt. respectively. The plank will start to overturn just
as the man reaches B and then the reactions at C and D will be zero
and 120 kg wt. respectively.

Example 3. A uniform solid hemisphere, of weight 2W, rests with its
base inclined at an angle 0 to the horizontal and with its curved surface
in contact with a rough horizontal floor and a smooth vertical wall.
The coefficient of friction between floor and hemisphere is 5/12. If the
hemisphere just begins to slip when a particle of weight W is attached
to its highest point, find 6.

Figure 21.3

Let the hemisphere have radius r. Then its centre of gravity G
is at a distance 3r from the base, i.c. 0G = 3r (refer to Figure 21.3).
Since the hemisphere is about to slip

F = uN
F = 5N.
Taking moments about O,
Wrcos 0 + 2W3rsin — S5Nr = 0. o)
Resolving,
vertically N-W-=-2W=0 ... ()
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[horizontally R—- &N =0. ... (i)
From (i) N = 3W and substituting this value in (i)
Wrcos 0 + §Wrsin 0 = 53Wr
cosf + 2sinf =3
$cosf + 2sinf =1
cos(0 —a)=1
where cos o = £,sina = 2 and hence a = 36° 52",
0—oa=0 or2m or....
But 0 is acute,
0 =o=36°52.

The base of the hemisphere is inclined at 36° 52’ to the horizontal.
[Note that equation (iii) was not needed in this particular example,
but would have enabled us to find the reaction between the hemis-
phere and the wall.]

Example 4. A solid body consists of a cube, of weight W and side 4a,
surmounted by a pyramid of weight W and height 4a. The pyramid
has a square base, also of side 4a, fixed to coincide with the top of
the cube. The body is placed on a rough plane, inclined at an angle o
to the horizontal, with an edge of its base along a line of greatest slope
of the plane. A force P, acting up the plane and parallel to it, is applied
to the vertex of the pyramid. Initially it is not large enough to disturb
the equilibrium of the body. Find the force of friction, the normal
reaction and the point on the base at which it acts.

If P now increases and the plane is rough enough to prevent slipping,
indicate how the forces change and find the value of P which causes
the body to overturn.

(b)
Figure 21.4

413



EQUILIBRIUM

Initially the forces are as shown in Figure 21.4a. The centre of
gravity of the pyramid part, being 4(4a) above its base, is distant S5a
from the plane. Let the normal reaction N act at a point distant x
from O the centre of the base of the body.

Taking moments about O,

W3iasina + 2W2asinoe + Nx — P.8 = 0. (@)
Resolving,

perpendicular to the plane N — 3Wcosa =0 ool (i)

up the plane P—F—3Wsinag =0. R (11

From (ii) N = 3W cos o and substituting this value in equation (i)

gives 9Wasina + 3Wcosax — 8Pa =0
_ 8Pa — 9Wasin o
3Wcos o
From (ii1) F =P —3Wsina

Initially then, F = P — 3Wsina, N = 3Wcosa and acts at a
distance (8P — 9W sin a)a/(3W cos «) from O.

As Pincreases, F will increase to prevent sliding, but the magnitude
of N remains constant at 3W cosa. To preserve the balance of
moments the point of action of N moves away from O until finally
N acts through the upper edge of the base at A (refer to Figure 21.4b).
Then, if P increases still further, there will be a net clockwise moment
and the body will overturn.

On the point of overturning x = 2a

(8P — 9Wsin a)/(3W cos o) = 2
P =0OWsina + 6Wcos a)/8.

This is the least value of P which will cause the body to overturn.

It should be noted that, in examples like these and others, the
point about which to take moments and the directions in which to
resolve are arbitrary. A careful choice may reduce the amount of
work in a problem considerably.

Exercises 2la

1. One end of a uniform rod, of mass 4 kg is freely hinged to a
fixed point A. The rod is held inclined at 30 degrees to the downward
vertical by a force F applied at the other end. F is at right angles
to the rod. Find the magnitude of F and the components of the
reaction at A along and perpendicular to the rod.
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2. A uniform plank AB, of mass 40kg and length 3 m, rests
horizontally on two supports C and D. It is placed so that
AC = 60cm and BD = 120 cm. Find the reactions at C and D.

3. A uniform rectangular door, 200 cm by 80 cm, weighs 16 kg.
It is in a vertical plane with its longer edges vertical and can turn
freely about two hinges attached to one of its longer edges. The
hinges are 20 cm from either end. Find the horizontal components
of the reactions at the hinges.

If the door is fitted badly so that the whole weight of the door is
carried by the upper hinge A, find the resultant reaction at A.

4. A solid body weight W, consists of a hemisphere, radius a,
and a right circular cone, radius a, and height 4a of different density
joined by their plane faces. The centre of gravity of the body lies
on the axis of symmetry distant a/8 inside the hemisphere. A weight
W, , whose size may be neglected, is attached to the apex of the cone.
Show that, if W; = 32W,, the solid will rest in equilibrium when
placed on a horizontal plane whichever part of the hemispherical
base is in contact with the plane. Find also the reaction of the plane
on the body in terms of W, .

5. A rectangular packing case, 90 x 90 x 150 cm and of mass
100 kg, rests with one of its square ends on a horizontal floor.
A horizontal force F is applied at right angles to an upper edge.
If the floor is rough enough to prevent sliding, find the least value of F
which will cause this case to overturn.

6. A uniform ladder, weight W, rests with one end against a
smooth vertical wall and the other end on a smooth horizontal floor.
It is prevented from slipping by a horizontal string attached to its
lower end. If 6 is the inclination of the ladder to the vertical, find
the tension in the string and the reactions of the wall and the plane
on the ladder.

7. A uniform solid hemisphere rests with its base inclined at an
angle 6 to the horizontal. Its curved surface is in contact with a
rough horizontal floor and with a smooth vertical wall. If the
hemisphere is about to slip, find the value of 8 in terms of u the
coefficient of friction between hemisphere and floor.

8. A light rod AB of length 24 is smoothly jointed to a vertical
wall at the point 4. [t is maintained in a horizontal position by a
light inextensible string of length 4a attached to the end B and to
a point C in the wall above 4. Weights W and 2W are attached to
the mid-pointand the end B of the rod respectively. Find the tension
in the string and the reaction at the hinge 4.

9. A uniform ladder has one end resting against a rough vertical
wall and the other end on a rough horizontal floor. The coefficients
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of friction at the wall and the floor being % and 3 respectively. Find
the greatest possible inclination of the ladder to the horizontal.

10. A cube, of mass 75 kg and side 50 cm, rests with one face on
a rough horizontal floor. A vertical plane through the centre of
the cube perpendicular to two opposite faces intersects the cube
in a square ABCD, CD being in contact with the ground. A force
of 25 kg wt.isapplied at B vertically upwards, and a force of 20 kg wt.
is applied at A4 in the direction of AB. If the cube is on the point of
slipping, find u the coefficient of friction between the cube and the
ground.

Find also the point at which the reaction of the ground on the
cube acts.

11. A uniform ladder rests with one end against a smooth vertical
wall and the other end on a rough horizontal floor, coefficient of
friction 5\/3/1 8. Theinclination oftheladder to the wallis 30degrees.
Show that a man whose weight is equal to twice the weight of the
ladder can just ascend to the top without the ladder slipping.

12. A uniform sphere, of weight W, rests on a rough plane which is
inclined at an angle « to the horizontal. Itis prevented from moving
by a light inextensible string which is tangential to the sphere and
makes an angle 8 with the plane. Find the tension in the string,
the frictional force and the normal reaction between the sphere and
the plane.

13. A lamina, of weight W, is in the form of an equilateral triangle
ABC of side 2a. Itrestsin a vertical plane with one vertex A against
a smooth vertical wall and another vertex B on a rough horizontal
floor. ABis inclined at an angle of 60 degrees to the wall. Find the
normal and frictional reactions at B.

Deduce that, if the lamina is not to slip and u is the coefficient of
friction between floor and lamina, u must be greater than or equal
to 1 /\/3.

14. A man weighing 72 kg stands on a uniform plank AB of
length 3 m and mass 24 kg. The plank is supported in a horizontal
position on two trestles. The points of support, C and D, are such
that AC = 20cm and DB = 30 cm. Find the reactions at C and D
when the man stands at a distance a m from A.

Deduce the region of the plank over which the man can move
without it tipping over.

15. A uniform ladder, of weight W, rests with one end against a
smooth vertical wall and the other end on a smooth horizontal floor.
Its lower end is attached by means of a light inextensible string to
the junction of the wall and the floor. A man of weight W climbs
the ladder. Show that as the man moves from a point one-sixth of
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the way up the ladder to a point five-sixths of the way up, the tension
in the string doubles.

21.2. TWO-FORCE PROBLEMS

When a body is in equilibrium under the action of two forces only,
the forces must be equal and opposite (so that their vector sum is
zero) and in the same straight line (so that their total moment is zero).

Example. A uniform solid oblique circular cone has its axis inclined
at an angle 0 to its base. The radius of the base is r and the length of
its axis is 4l. If the cone is suspended from the point on the base
nearest to its axis, find the inclination of the base to the vertical.

If the cone is placed on its base on a horizontal surface and is
released, find the range of values of | for which it does not topple.

(a) (b)
Figure 21.5

The centre of gravity of the cone lies one quarter of the way up
its axis so that MG = [.

When the cone is suspended from O in equilibrium, the tension
and weight must be in the same line. Hence OG must be vertical
and the angle MOG = « is the inclination of the base to the vertical.
{Refer to Figure 21.5a.)

Applying the sine rule to triangle OMG,

l r
sino  sin (o + 6)

rsin o

I(sin o cos 8 + cos « sin )
sinor — lcos 8) = lcos asin 0

Isin 8

tang = ————— .
r— lcos@

The base of the cone makes an angle tan ™! (I sin 6/(r — I cos 9)) with
the vertical.
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When the cone stands on the surface the weight and normal
reaction N must be in the same straight line, i.e. the point in the base
at which N acts must be directly beneath G (refer to Figure 21.5b).
However, for sufficiently large values of [ the line of action of W
may lie outside the base while N actsat O. Then there is a clockwise
moment and the cone overturns.

Hence for no overturning

x < MO
ie. lcosO < r
[ < rsech.

The cone will not topple provided ! < rsec 6 (indeed if | < r the
cone cannot overturn whatever the value of 6).

Exercises 21b

1. A hemisphere, of radius a, is suspended by a light inextensible
string attached to a point on the circumference of its plane face.
Find the inclination of the plane face to the vertical when (a) it is
solid and homogeneous (b) it is hollow.

2. A uniform lamina is in the form of a triangle ABC, right-angled
at B,in which AB = 12 cmand BC = 9cm. Itissuspended from A.
Find the inclination of AC to the vertical.

3. A uniform solid oblique circular cylinder has base radius a
and its axis is inclined at 60 degrees to its base. If the cylinder does
not topple when placed on a horizontal surface, find its greatest
possible height.

4. A uniform thin hollow right circular cone (without a base) has
base radius a and height h. It is placed with its base in contact with
a rough plane. If the plane is gradually tilted and the friction is
sufficient to prevent slipping, find the inclination of the plane when
the cone topples.

S. A uniform right prism has a cross-section in the form of a
triangle ABC. With the usual notation for such a triangle, show that
the prism can stand on the face containing BC provided cos ¢ < —a/b.

21.3. THREE-FORCE PROBLEMS

Problems in which a body is in equilibrium under the action of
three forces can be solved by the general method of taking moments
and resolving as described in Section 21.1. However, in the three-
force case, there are alternative methods available due to two
important properties.
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(a) If a body is in equilibrium under the action of three coplanar*
forces, they meet in a point or are parallel.

Fr

/d F2

Figure 21.6

Referring to Figure 21.6, let two of the forces intersect at O and
the third F; lieata distance d from 0. Then taking moments about O,

F3Xd:0
d=20

and F; must pass through O as well. Hence if two of the forces
intersect they all meet in a point. Alternatively, if none intersect,
the three forces are parallel.

(b) When a body is in equilibrium, the vector sum of the external
forces acting on it is zero. Hence they can be represented by the
sides of a closed polygon taken in order. When there are three
forces this polygon becomes a triangle which is particularly suitable
for trigonometrical calculation.

So, instead of taking moments and then resolving, we may
if convenient (a) obtain a trigonometric relation from the space
diagram having made the three forces meet in a point, and (b)
obtain two more equations from the trigonometry of the vector
triangle.

Example 1. A sphere, of mass 5kg and radius 5cm, has a light
inextensible string 5 cm long attached to its surface. The other end
of the string is fastened to a smooth vertical wall and the sphere hangs
in equilibrium resting against the wall. Find the inclination of the
string to the wall. Find also the tension in the string and the reaction
between the wall and the sphere.

* It can be shown that if a body is in equilibrium under three forces they must be
coplanar. Hence the property applies in any three-force equilibrium problem.
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Q\A\ 3
N g
(b)

Figure 21.7

The normal reaction of the wall and the weight of the sphere act
through its centre O (refer to Figure 21.7a). Since it is under the
action of three forces, the sphere will turn until the line of the string
also passesthrough O. Thenfromtriangle ABO,sin« = OB/OA = %,
and since « is clearly acute this gives o = 30 degrees.

From the vector triangle (Figure 21.7b),

N = 5tana and T = S5seco

N =5//3kgwt. and T =10//3kgwt
The string is inclined at 30 degrees to the downward vertical, the
tension in the string is 10/\/5 kg wt. and the reaction of the wall is
normal to the wall and of magnitude 5/\/5 kg wt.

A useful formula in these problems is the cotangent rule for a
triangle*®

Figure 21.8

* Proofs of this formula may be found in standard mathematical texts including
Pure Mathematics for A Level by Bunday and Mulholland.
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If, in the triangle shown in Figure 21.8, G divides AB in the ratio
m:n, then

(m + n)cot = mcota — ncot
or (m + n)cotd = ncot A — mcot B.

An especially useful case is when G is the mid-point of AB so that
m =n = 1. Then

200t0:cota—cotﬂ#cotA — cot B.

Example 2. A uniform ladder AB, of weight W, leans against a smooth
vertical wall at A and rests on rough horizontal ground at B. A is the
angle of friction between ground and ladder and the ladder is inclined
at an angle 0 to the wall. Show that tan § < 2tan A, and find the
reactions at A and B when the ladder is about to slip.

Figure 21.9

With the ladder in equilibrium the lines of action of the normal
reaction N at A, the weight W and the total reaction S at B must
meet at O (refer to Figure 21.9a). Let ¢ be the angle between S and
the vertical.

Applying the cotangent rule to triangle AOB,

2 cot 8 = cot ¢p — cot 90°
tan 0 = 2 tan ¢. v (@)

From the vector triangle (refer to Figure 21.9b) which is right
angled,

N = Wtan ¢ L. (i)
S = Wsec ¢. R 114
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Now for no slipping at B, ¢ < A the angle of friction, or since
¢, A are acute angles

tan tan A

¢ <
2tan ¢ < 2tan 4
0<2

and from (i) tan tan A.

When the ladder is about to slip, ¢ = 1 and substituting for ¢
in (i) and (iii) gives
N = Wtan A, S = Wsec A

Example 3. A smooth hemispherical bowl, of internal radiusr, is fixed
with its rim horizontal. A thin uniform rod of length | (I < 4a) rests
with one end inside the bowl and the other projecting over the rim.
If the rod is inclined at an angle 0 to the horizontal, show that
4rcos 26 = Icos 6.

Find also the reactions between rod and bowl in terms of 68 and W
(the weight of the rod) only.

M Ny

Figure 21.10

Refer to Figure 21.10. The reactions at A and B are normal to the
common tangents of the surfaces in contact. Hence N, passes
through the centre O of the hemisphere and N, is perpendicular
totherod. Sinceintriangle AOB, A0 = OB = r,therefore / OAB =
/ OBA = 0. Thus N, is inclined at an angle 26 to the horizontal.

Taking moments about A4,

N, x AB— W x 3lcos@ =0
N,2rcos @ = Wilcos 0. ()
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From the vector triangle, applying the sine rule

N, N, W

sinf  sin(90° — 26) sin(90° + 0)

N, N, W

sinf® cos20 cos@’
Giving N, =Wtan#6 oo (i)
and N, = Wcos 20/cos 6. ... (i)

Substituting this value of N, in equation (i),
we 20 2rcos @ = Wilcos @
0s 0

or 4r cos 20 = lcos 0.

(Note that this last relation can also be obtained from the geometry
of the figureafter drawing N, , N, and Wtomeetina point. However,
taking moments seems easier in this case.)

Exercises 21c

1. A spherical steel ball, of mass 200 kg, is suspended by a chain
fastened to it by a smooth joint. It is pulled sideways by a force of
50 kg wt. Find the force exerted by the chain on the ball.

2. A uniform square plate ABCD, of side 2a, has a string attached
to the mid-point of BC. The other end of the string is fastened to
a point O in a smooth vertical wall. The plate rests, in a vertical
plane, with the vertex C against the wall and CA4 horizontal. Find
the length of the string.

Also, if the plate has weight W, find the tension in the string and
the reaction at the wall.

3. A circular hoop, of weight W, hangs over a rough horizontal
peg. An equal weight Wis attached by a string to the rim of the hoop.
If the string is targential to the hoop which is just about to slip,
find the angle of friction between the peg and the hoop.

4. Arod AB, of length 5aq, rests inside a smooth sphere, radius 5a.
AG = 2a,where G is the centre of gravity of therod. Find the inclina-
tion of the rod to the horizontal.

S. A uniform semi-circular plate rests with one point of its curved
surface against a smooth vertical wall, and another point on a
rough horizontal floor. The plane of the plate is vertical and
perpendicular to the wall. If the bounding diameter makes an
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angle 6 with the horizontal, show that the total reaction of the floor
on the plate is inclined at tan ! (4 sin §/37) to the vertical.

If u is the coefficient of friction between floor and plate, deduce
the range of values u may take for equilibrium to be possible.

6. A sphere rests on the curved surface of a fixed smooth hemi-
sphere radius 2a. Equilibrium is maintained by a light inextensible
string, length a, attached to the sphere and the highest point of the
hemisphere. Find the tension in the string and the reaction between
hemisphere and sphere. (Radius a, weight W)

7. A uniform ladder rests with one end against a rough vertical
wall and the other on a rough horizontal floor. The coeflicients of
friction at the wall and floor are respectively u, and u,. Find the
inclination of the ladder to the floor when the equilibrium is limiting.

8. A solid homogeneous sphere, of radius g, rests in contact with
a smooth plane inclined at an angle sin™ ' (3/5) to the horizontal.
It is maintained in equilibrium by a light inextensible string of
length 18a/7, one end of which is attached to the sphere and the
other end to the plane. Find the tension in the string and the reaction
of the plane on the sphere in terms of W the weight of the sphere.

9. A uniform rod AB, of length 2a and weight W, rests on a rough
peg P with its lower end A under a smooth peg Q at a lower level
than P. The rod is inclined at an angle 6 to the horizontal and
PQ = ¢ (< a). Find the coefficient of friction at the peg P, if the
rod is just about to slip.

10. A uniform rod rests inclined at an angle 6 to the horizontal
with its ends on two planes, each inclined at an angle « to the
horizontal. The line of intersection of the planes is horizontal.
The angle of friction at both points of contact is 4. Show that, if the
rod is about to slip,

tan 8 = (sin 24)/(cos 200 + cos 24).

[It is suggested that students also pick out those problems in
Exercises 21a for which the above methods are suitable and rework
them.]

21.4. SEVERAL BODIES IN CONTACT

By Newton’s third law, the reactions between bodies in contact
are equal and opposite. Hence, when considering the equilibrium
of several bodies as a whole, the internal forces may be ignored.
In addition, we may consider the equilibrium of each body separately.

Take the case of two bodies in equilibrium under the action of
coplanar forces. Taking moments and resolving for both bodies
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together and for each separately, gives nine equations. Only six of
them, however, are independent, and perhaps not all of these are
required in a particular problem. It is important to try to select
those equations which lead most simply to the required solution.

Example. A uniform thin smooth rod, of weight W and length 4a,
is freely hinged to a rough horizontal surface. The rod is lifted and a
rough cube, of side 2a and weight W, is pushed under it until the rod is
inclined at 45 degrees to the horizontal. Show that, when released,

the system will remain at rest provided Tu = 2./2 — 1, p being the
coefficient of friction between the cube and the surface.

Find the horizontal and vertical components of the reaction at the
hinge in this position.

¥
20/ z:a
]

Figure 21.11

Suppose that no slipping takes place and the rod and cube remain
in equilibrium. Figure 21.11a shows the forces on the bodies
considered together: Figure 21.11b shows the forces on the bodies
separately.

Consider first the rod and cube together. Resolving,

horizontally X—-F=0 oo i)
vertically Y+R-2W=0. 1Y)
Consider the rod alone and take moments about the hinge.
N .2acosec45® — W.2acos45 = 0. R (11
Consider the cube alone. Resolving,
horizontally Nsin45° — F =0 e (iv)
vertically R — Ncos45®° — W=0. e (V)
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From (iii) N = W and substituting this value in (iv) and (v) we
obtain

F=iw/2, R= W(l +§).

2

4+ /2

u=z

Tu=2/2-1.
Also, substituting for F and R in (i) and (ii),

X =iW/2, Y= W(l —\/TE),

and these are the horizontal and vertical components of the reaction
of the hinge on the rod.

21.5. JOINTED RODS

The methods outlined in the previous section can be applied to
frameworks consisting of heavy rods freely hinged (pin-jointed)
together. However, to determine the reactions between the rods
the gquilibrium of the pins has to be considered.

]
Nt X
Xy = Xp X

(a)
Figure 21.12
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When there is no external force acting on the pin, the forces
acting will be as shown in Figure 21.12a (the pin is assumed to be of
negligible weight). Since the pin is in equilibrium, Y, = Y, and
X, = X,. Hence the reactions on the rods are equal and opposite
so that they may be treated as if the pin were not there and the rods
were acting directly on one another (see Example 1 following).

When there is an external force P acting on the pin (refer to
Figure 21.12b), then these reactions will no longer be equal and
opposite and the equilibrium of the pin must be considered in
each case. However, in particular problems, it is usually possible to
omit consideration of the reactions at such a joint. This is done
either by taking moments about the joint or by considering the
adjacent rods and the pin as one unit (see Example 2 following).

Example 1. Three identical rods, each of weight W, are freely jointed
together to form a triangle. The framework is suspended from the
mid-point of one of the rods. Find the tension in the string with which
it is suspended and the reactions at the joints.

c
(a)

Figure 21.13a, b

Referring to Figure 21.13a, consider the framework as a whole.
Vertically T-3W=0. (i)

The framework and the external forces acting on itare, in this case,
symmetrical about a vertical line. Hence the reactions at the joints,
which arise in response to the external forces, are also symmetrical.
These reactions are shown in Figure 21.13b.

Consider the rod AB. Resolving,

vertically T—-2Y-W=0. ol (id)
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Consider the rod AC. Resolving,

vertically Y+, -W=0 BN 411
and horizontally X, —X=0 R (1]
Taking moments about A

Y:.2acos 60° + X 2asin 60° — W.acos60° =0. ....(v)

Now solving successively equations (i), (ii), (iii), (v) and (iv) we
obtain

T=3W, Y=W, Y =0 X,=X=€W.

Thus the components of the reaction on the rod AC at A are as
shown in Figure 21.13c.

Figure 21.13¢

Hence the resultant reaction R on AC at A is given by
3 2
R =W+ (% W)

w./39/6
also tanf = 6/\/3 = 2\/5.

The tension in the string is 3W, the reaction at C is horizontal and
of magnitude \/3_W/6, and thereaction at A is of magnitude \/35 wW/6
inclined at tan~* 2\ﬁ to the horizontal.

(Note that the fact that Y; = 0 could also have been deduced from
the symmetry of the figure.)

R

Example 2. A framework ABCD consists of four equal rods, each of
weight W, freely jointed together. The framework is suspended from
A and prevented from collapsing by a light inextensible string, of the
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same length as the rods, joining A to C. Find the reaction at B and the
tension in the string AC.

Y,
X w
D X y

v n

{60

w N
c
Figure 21.14

Theframework and the external forces acting on it are symmetrical
about the line AC. Wherever, because of this symmetry, it is clear
that forces are equal, they have been marked as such on the diagram
(Figure 21.14).

Consider the rod AB. Taking moments about A,

X .2ac0s60° + Y.2asin 60° — Wasin60° =0. ....(1)
Consider the rod BC. Taking moments about C,
X .2acos 60° — Y2asin 60° — Wasin60° = 0. ... (i1)
Consider the rods DC and CB together. Resolving vertically,
T, —2Y-2W=0. ... . (i)
Adding (i) and (i1)

X . 4a cos 60° = 2Wa sin 60°.

X=\/§W.

Subtracting (ii) from (i)
Y.4asin 60° = 0

Y=0.
Substituting for Y in (iii)

Tl = 2W
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The reaction at B is horizontal and of magnitude \/§W/2; the
tension in the string AC is of magnitude 2W.

21.6. LIGHT FRAMEWORKS

Consider a light rod AB, in equilibrium, whose weight is negligible
compared with resultant forces R, R, acting on its ends (refer to
Figure 21.15). Taking moments about A, R,d = 0. Hence d =0
and R, acts along BA. Similarly R, acts along the rod. Thus the

forces always act along a light rod.
Ty T
‘> Tension B <

Y2 ay
Thrust

Figure 21.15 Figure 21.16

In a framework consisting of light rods, the rods transmit the
forces between the joints. Figure 21.16 shows the forces T;, T,
exerted by two such rods on the joints at their ends. When the rod
pulls on the joints (like a string) the force in it (T;) is called a tension
when it pushes on the joints the force (T) is called a thrust.

When considering the equilibrium of such a framework we can (a)
consider the framework as a whole and (b) consider the equilibrium
of each joint.

Example. A framework consists of five light rods, four of length a and
one of length a\[3, joined together as shown in Figure 21.17. The
Sframework is in a vertical plane hinged freely to a smooth wall at A
and with a load W at C. Find the horizontal and vertical components
of the reaction at A and the stresses in the rods.

vy 30°
X | ]
3.1

-« - —Q-—-™

Figure 21.17
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Consider the whole framework, refer to Figure 21.17. Taking
moments about A,

Na — Wa,/3=0 ()
Resolving,
vertically Y-W=0 ... (i)
horizontally X—-N=0. .o (idd)
Consider the joint at C. Resolving,
vertically T,sin30°+ W=20 e (V)
horizontally T, + T>cos 30° = 0. e V)
Consider the joint at D. Resolving,
perpendicular to BC T,sin 60° =0 e (i)
along BC T, — T3 — T, cos 60° = 0. ... (vii)

Consider the joint at B. Resolving,
vertically T5 + Ty cos 60° = 0. ... . (viii}

Equations (i), (ii) and (iii) give Y = Wand X = N = W, /3.

From(v)and (v), T, = —2W and T, = W\ﬁ
From (vi)and (vii), T,=0 and T;= —-2W
From (viii), T, = W

Thus the horizontal and vertical components of the reactions at A
are W./3and Wrespectively. The forcesin AC and AB are tensions
of magnitude W\/§ and W respectively, and the forcesin BD and DC
are thrusts each of magnitude 2W. There is no stress in the rod AD,
indeed it is unnecessary for the framework.

Engineering structures of this type (bridges, cranes etc.), often
have many members and there is a large number of joints to consider.
Methods have been developed to “streamline” the process of deter-
mining the stresses in the rods. One such method involves construct-
ing a “force-diagram” for the whole structure by super-imposing the
vector diagrams for each joint. However, we shall not pursue these
matters further here.

Exercises 21d
1. A uniform rod, of length 6a and weight W, is smoothly hinged
at one end to a rough horizontal floor. The rod rests on the curved
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surface of a hemisphere inclined at 45 degrees to the horizontal. The
hemisphere, of weight W and radius a, has its base in contact with the
floor. Find the reaction between the rod and the hemisphere and
show that the coefficient of friction between the floor and the
hemisphere is greater than or equal to 2.

2. Two smooth spheres, of weights W and W' respectively, hang
suspended from the same point by light inextensible strings. The
strings are such that the spheres hang with their line of centres
horizontal. If the strings suspending W and W’ make angles of § and
¢ respectively with the vertical, show that

W:W’' = tan ¢ :tan 0.

3. A smooth sphere, of weight W, rests on the face of a prism,
weight 4W, the face being inclined at an angle 6 to the horizontal.
The sphere is in contact with a vertical wall and the prism rests on a
rough horizontal floor, coefficient of friction u. Show that u >
(tan 6)/5.

4. Three rough cylinders, each of radius a and weight W are in
equilibrium with their axes horizontal. Two are in contact with a
rough horizontal plane and the distance apart of their axes is 12a/5.
The third cylinder rests symmetrically on top of the first two. If the
equilibrium is limiting at all lines of contact, find the coefficients of
friction.

5. Two uniform rods AB and BC, each of weight W, are smoothly
jointed at B. They rest in a vertical plane with 4 and C on a rough
horizontal surface. The coefficient of friction at both 4 and C is p.
Show that 2y > tan 6 and find the reaction at the joint B.

6. Aframework ABCD consists of four equal rods, of equal length
and each of weight W, freely jointed together. The framework is
suspended from the mid-point of 4B so that it hangs in a vertical
plane. Find the reactions at B and D.

7. Three identical rods, each of weight W, are freely jointed
together to form a triangle ABC. The framework is suspended from
A. Find the horizontal and vertical components of the reactions at
the joints.

8. A rhombus ABCD is formed of four uniform rods, each of
length 2aand weight W, freely jointed at the corners. A lightinelastic
string, of length 24, connects A4 and C. The system hangs in equili-
brium by two vertical strings attached to 4 and B so that the rod AB
is horizontal. Find the tension in each of the three strings.

Find the reaction between the rods at the joint D and show that
no horizontal force acts on the rod BC at C. (W.J.E.C)

9. A light rod 4B is freely hinged to a vertical wall at 4 and the
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end B is connected to a point C on the wall above A by another
light rod which is horizontal. A weight WhangsfromB. If / CAB =
0, find the stresses in the rods.

10. A framework consists of three light rods AB, BC and CA
freely jointed at 4, B and C. They form a triangle in which angle
ABC is a right angle and angle CAB = 30 degrees. The frameisina
vertical plane, supported at A and C, with AC horizontal and B
above AC. A weight Wis hung from B. Find the stresses in the rods.

21.7. ALTERNATIVE CONDITIONS FOR EQUILIBRIUM

Our general method, for solving problems of equilibrium under the
action of coplanar forces, has been to obtain three equations by
taking moments about a point and resolving in two directions at
right angles. We shall show that alternative methods are:

(a) to take moments about two points A and B, and to resolveina
direction not at right angles to AB, or

(b) to take moments about three points not in the same straight
line.

Figure 21.18

Let A, B, C be three non-collinear points in the plane of the system
of forces. Then the system can be reduced to a single force R acting
through A together with a couple of moment G (refer to Figure 21.18).

If the total moment about A is zero, then G = 0. If, in addition,
the total moment about Bis zero, then Rd = Oand either R = Oor R
lies along AB. That is, the system is in equilibrium (R = G = 0) or
R lies along AB.

But if R is not zero and lies along AB, it must have a component
in a direction not perpendicular to AB, and it must have a moment
about ¢. Hence if either of these is zero, R must be zero and the
system is in equilibrium.

Example. A uniform rod AB, of length 4 m and mass 10kg, has a

particle of mass 5 kg attached at B. It is freely hinged at A to avertical
wall and held inclined at 60 degrees to the downward vertical by a
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string attached to B and to a point on the wall 4 m, above A. Find the
tension in the string and the horizontal and vertical components of the
reaction at the hinge.

10 kg wt.
5 kg wt.

Figure 21.19

Refer to Figure 21.19. Since AC = AB = 4 m and the exterior
angle of triangle ABC = 60degrees,/ ACB = / CBA = 30degrees.
Taking moments about A4,

T x 4sin30° — 10 x 2sin60° — 5 x 4sin60° = 0. ....(i)
Taking moments about C,
X x4 —10 x 2sin 60° — 5 x 45sin 60° = 0. ... ()

Resolving vertically,

Y+ Tcos30°— 10— 5=0. ... (iid)
From (i) T = 10,/3 kg wt.
From (ii) X = 5/3 kg wt.
From (iii) Y =0

The tension in the string is 10ﬁ kg wt. and the reaction at A4 is

horizontal and of magnitude 5\/5 kg wt. (Note that instead of (iii), a
third equation could have been obtained by taking moments about
some point not on CA, say B for example.)
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21.8. MISCELLANEOUS EXAMPLES

Example 1. A cone of radius r and height h rests on a rough horizontal
surface, the coefficient of friction between cone and surface being 1. A
gradually increasing horizontal force P is applied to the vertex of the
cone. Find the range of values of u for which the cone will slide before
it topples.

P

(a) (b)
Figure 21.20

Figure 21.20a shows the forces acting when the cone is about to
slipand F = uN. In this case resolving

vertically N - W=0,
horizontally P, — uN = 0.
This gives
P, = uWw. .o ()

Figure 21.20b shows the forces when the cone is about to topple
about 0. In this case, taking moments about O, P,h — Wr = 0.

P, = Wrih. ... (i)

The cone will slide before it topples if P reaches the value P,
before it reaches the value P,, i.e.

if uw < Wrih
or u <rfh

Note that in this kind of problem we investigate the least values of
the varying quantity which cause toppling and sliding. In this
problem the varying quantity was the force P, in another it might be
the gradually increasing inclination of a plane.
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Example 2. A step-ladder consists of two equal arms BA, AC freely
hinged at A. The weight of AB is three times that of AC. Show that if
the angle between BA and AC is steadily increased then slipping first

takes place at C.
If BA, AC are to be placed so that /_BAC = 90 degrees, find the

least value of u to prevent slipping.

Figure 21.21

Consider CA4 and AB together (refer to Figure 21.21). Taking
moments about C,

N,.4lsin@ — 3W.3lsinf — Wisind =0 L)
Resolving,
vertically N, +N,—4W =0 ()
horizontally F,-F =0 R (111

From (i) N, = 5W/2 and substituting this value in equation (ii) gives
N, = 3W/2. Also from equation (iii) F; = F, = F (say).
Consider 4B alone. Taking moments about 4,
N,.2lsin® — 3W .lsin@ — F.2lcos0 = 0,
and on substituting for N, this gives
F = Wtan6. e (@)

Hence as @ increases, F will increase and, since it will reach the
value p.3W before it reaches the value u.3W, slipping will take
place at C.

When 6 = 45 degrees, F = W from (iv) and for no slipping.

F < uN,
Le. W < u3wy2
ie. u = 2/3

The least value of u to prevent slipping, when 6 = 45 degrees, is 2/3.
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Example 3. Asphere of weight W is hung on a string from a point on the
vertical line of intersection of two perpendicular walls, and hangs in
smooth contact with them. If the length of the string and the radius of
the sphere are both a, find the tension in the string and the reactions due
to the walls.

Figure 21.22

Refer to Figure 21.22. Since the normal reactions and weight pass
through the centre O of the sphere, then so must the line of action of
the tension. )

Let A be the point where the string meets the walls : B the point of
contact on one wall: C the point on the line of intersection of the
walls at the same level as B. Then «, the inclination of the string to
the wall is given by

sina = OB/OA = a/2a) = 1
o« = 30°.
Similarly B, the inclination of the string to the vertical is given by

sin f = OC/OA = a./2/(2a) = L

>

p = 45°.
Resolving,
vertically Tcosd45° — W =20 co ()
normaltowallatB N, — Tsin30° =0 ... ()
normal to other wall N, — T'sin 30° = 0. ... (iii)

From equation (i) T = \/EW and substituting this value in (ii)
and (iii) gives N, = N, = W/\/E.
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The tension in the string is of magnitude W\/i and the reactions
at the walls are normal and each of magnitude W/\/E,

Example 4. A table has an equilateral triangular top, of side 2a,
supported by three vertical legs at the mid-points of the sides of the
triangle. The whole table has a weight W. Show that the greatest
weight that can be placed at one of the vertices of the triangle without
overturning it is 3W.

If a particle of weight tW is placed at a corner of the table, find the
vertical reactions on the legs.

Figure 21.23

Consider the table when a weight w is placed at a vertex and it is
about to topple (refer to Figure 21.23a). There will be no reaction
on the leg at C and the reactions at A and B will be the same by
symmetry.

Taking moments about the line AB,

wx; — Wx, =0.
But, since the triangle is equilateral and of side 24,
x, =3%a/3 and x, = éa\/g.
w.la /3 — W.ta /3 =0,
giving w=iW.

This is the greatest weight that can be placed at a vertex without
overturning the table.

Hence if a weight LW is placed there the table will not topple and
the reaction at C will not be zero (refer to Figure 21.23b).
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Taking moments about the line AB in this case,
tW.a /3 — W.a /3 + N, .4a /3 =0. ... 0)
Resolving vertically,
N+ N, - W-LWw=0. ... (i)

From equation (i) N, = {W and substituting this value in (ii)
gives N = {W.

Thus the reactions at A and B are of magnitude £W and that at C
of magnitude LW,

Exercises 21e

1. A uniform rod, of length 40 cm and weight 20 kg, is freely
hinged at one end A to a vertical wall. The other end B is tied to a
point C, vertically above A, by a string of length 30 cm. The string
is at right angles to the rod. By taking moments about two points
‘and resolving in a suitable direction, find the tension in the string and
the horizontal and vertical components of the reaction at A.

2. A uniform right circular cylinder, of radius a, weight W and
height A, is placed on a rough plane inclined at an angle « to the
horizontal. A horizontal force Pis applied at the highest point of the
cylinder directed towards the plane. The plane is rough enough to
prevent slipping and the magnitude of P is such that the cylinder is
about to overturn. By taking moments about three suitable points,
determine directly the magnitude of P and of the normal reaction and
friction. .

3. A homogeneous right circular cylinder, of height h and base
radius a, is placed with a plane face in contact with a rough plane, the
coefficient of friction being u. The plane is gradually tilted. Show
that the cylinder will topple before it slides if 4 > 2a/h.

4. A uniform solid cube is placed on a plane inclined at sin~ ! £ to
the horizontal, one of the edges of the cube being horizontal. A
gradually increasing force is applied, parallel to and directly up the
plane, to the mid-point of the upper edge of the cube. The cube
eventually topples over without sliding. Find the range of possible
values of u, and the coefficient of friction between cube and plane.

5. Two equal uniform rods AB and BC, of weights W and 2W,
respectively, are freely jointed at B. They restin a vertical plane with
A and C on rough horizontal ground. The coefficient of friction at
both Aand Cis u. Theangle ABC is gradually increased and slipping
occurs when angle ABC is 120 degrees. Find p.

6. A pair of steps consists of two uniform ladders 4B and BC,
each of weight W and length 24, freely hinged at B. They are placed
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on rough horizontal ground with angle ABC a right angle. A man
of weight 2W climbs the steps on one side. Calculate the reactions
at the floor when his distance from the top is x. If the coefficient of
friction is 1/3 at both A and C, find the distance the man can climb
before the steps collapse.

7. A sphere, of weight W, rests in the corner formed by two vertical
walls and a horizontal floor. It is held in position by a horizontal
force, of magnitude 2W, directed through the centre of the sphere
and at 45 degrees to each wall (the walls being at right-angles to each
other). Find the reactions at the three points of contact.

8. In the situation described in Question 7, the force of magnitude
2W is replaced by a force of magnitude W\/g directed through the
centre of the sphere directly into the corner. Find thereactionsin this
case.

9. A square table, of weight W, is supported by four vertical legs
one at the mid-point of each side. What is the greatest weight that
can be placed at a corner without upsetting the table?

10. A table, in the form of an equilateral triangle ABC, is attached
toa vertical wall by a smooth hinge along the side AB. Itissupported
in a horizontal position by two strings attached to points D, Ein AC,
BC respectively. D divides AC in the ratio 2:1 and E divides BC in
the same ratio. The strings are parallel, perpendicular to AB and
inclined (towards the wall}at an angle a to the table. Ifthetable hasa
weight Wand two particles, each of weight W, are placed at the mid-
points of AC and BC, find the tensions in the strings. Find also the
horizontal and vertical components of the reaction on the hinge.

EXERCISES 21*

1. Two smooth planes inclined at angles « and f to the horizontal
face each other their line of intersection horizontal. A sphere of
weight W rests between them, find the reaction of each plane on the
sphere.

2. A circular hoop, of radius a weight W, has a light inextensible
string of length 2a attached to its perimeter. The other end of the
string is attached to a smooth vertical wall and the hoop hangs in
equilibrium resting against the wall with its plane perpendicular to
the wall. Find the tension in the string and the reaction between the
hoop and the wall.

3. A uniform rod, of weight W, rests on two equally rough pegs 4
and B at different levels in the same vertical plane. The rod is
inclined at an angle 0 to the horizontal and the coefficient of friction

* Exercises marked thus, 1, have been metricized.
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between a peg and a rod is u. Show that, so long as the centre of the
rod lies between 4 and B equilibrium is possible if 4 > tan 6.

4. A plane lamina in the form of a sector of a circle centre O,
angle 60 degrees is freely suspended by a string attached to one end
A of its bounding circular arc. Find the inclination of OA to the
downward vertical.

5. A rod is freely hinged to a horizontal floor and rests, inclined,
across a circular cylinder. The cylinder also rests on the floor and its
axis is perpendicular to the rod. Show that equilibrium is impossible
if either the rod, the floor or the cylinder are smooth.

6. A uniform solid right circular cone, of height h and radius r, is
placed with its base on a rough plane. The coeflicient of friction
between cone and plane is u. The inclination of the plane is gradu-
ally increased and the cone begins to slide and topple simultane-
ously. Show that u = 4r/h.

7. A uniform rod 4B, of length 24, rests with one end 4 againsta
rough vertical wall. It is supported, at an angle « to the horizontal,
by a light smooth ring R threaded on it and tied to a point P on the
wall vertically above 4. Deduce that angle PRA is a right angle.

If PA = d (dsina < a) and p is the coefficient of friction, show
that when the rod is on the point of slipping down the wall

dseco = a(coto + p).

8. Two equal uniform rods AB and BC, each of weight W, are
freely jointed at B and A is attached to a smooth fixed pivot. A
horizontal force, of magnitude W, acts at the end C. Show that, in
equilibrium, the rods are inclined at tan~ ! (2/3) and tan~ ! (2) to the
vertical respectively. Find the resultant reaction at A.

9. A uniform ladder, of length 4a and weight W, rests with one end
against a smooth wall and the other end on a rough horizontal
floor. A light elastic string, of modulus W and natural length q, is
attached to the mid-point of the ladder and to the junction of the
wall and the floor. Show that, whatever the inclination of the ladder,
the stretched length of the string is constant. Find the frictional
force at the foot of the ladder when it is inclined at an angle 8 to the
vertical.

10. A uniform rod AB, of length 2a, has a ring fastened to the end
A which is threaded on a fixed rough horizontal wire. The end B is
firmly attached by a light inextensible string, of length 24, to a fixed
point C on the wire. If yis the coefficient of friction at A, and the rod
is about to slip when / ABC = 260, show that 3u = tan 0.

11. Three uniform rods AB, BC and CD, each of length 2a and
weight W, are freely jointed at B and C. They rest, symmetrically in
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a vertical plane, with 4 and D in contact with a rough horizontal
surface. If / BAD = 60 degrees and / ABC = 120 degrees, find
the frictional force at A. Find also the reaction at B.

12. A uniform rod 4B, of length 2a and weight W, rests with one
end A4 on a rough horizontal floor, coefficient of friction u. Another
point C of the rod, where AC = ¢( < 2a) touches a smooth peg. If
the rod is inclined at an angle 6 to the vertical, show that

asin f cos 8
¢ —asin?0’

13. A piece of uniform thin wire is bent and joined to form a semi-
circle together with its bounding diameter AB. The wire is hung
with AB in contact with a rough horizontal peg. The coefficient of
friction between wire and peg is . Ifequilibrium is possible with any
point of AB in contact with the peg, find the range of possible values
of u.

14. A uniform thin plank, of length 8a and weight W, , rests in a
horizontal position on a fixed rough circular cylinder of radius a. A
weight W, is attached to one end and the plank rotates, without
slipping, on the cylinder to a new position of equilibrium inclined at
an angle 0 to the horizontal. If the plank is just about to slip, show
that 1 = 4W, (W, + W,) where 4 is the angle of friction.

15. A uniform ladder rests against a smooth vertical wall with its
lower end on a rough floor, coeflicient of friction u. The floor slopes
away from the wall at an angle of inclination of « to the horizontal.
The ladderisinclined to the wallatan angle 6 and is just about to slip,
find u.

16. Three uniform rods AB, BC and CA, whose weights are
proportional to their lengths are freely jointed to form a triangular
framework. AB =30cm, BC = 40cm and CA = 50cm. The
framework is hung with C 4 horizontal and over a peg P. Show that
AP = 24cm.

If 5 g/cm is the mass per unit length of the rods, find the horizontal
and vertical components of the reactionsat A and C.

17. A uniform cube lies on a rough horizontal floor, coefficient of
friction y. A gradually increasing force is applied to the mid-point of
and perpendicular to a top edge acting in an upward direction at an
angle 0 (< 90°) to the top force. Show that the block will rotate
about a bottom edge, without sliding first, if tan 8 > (1 — 2u)/u.

18. Three spheres of equal radii but of weights W, , W,, W;, restin
order, with their centres on a horizontal line. They hang on three
light inextensible strings from the same point which is vertically
above their line of centres. If 8,, 0,, 65 are the inclinations of the
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strings, respectively, to the vertical (measured in the same sense),
show that X(Wtan 6) = 0.

19. A step ladder consists of two equal arms AB and BC, each of
weight W, freely hinged at B. It rests with A and C on a smooth
horizontal floor and with the arms each inclined at 30 degrees to
the vertical. A light inextensible string connects C to the mid-point
of AB. Find the tension in the string and the reaction at B.

20. Two planes, each inclined at an angle « to the horizontal, face
each other. Their line of intersection is horizontal. Three identical
uniform cylinders are placed symmetrically in the groove between
the planes, with their axes horizontal. The two lower cylinders are
in contact with one another and each with a plane. The third cylinder
rests on these two. If all points of contact are smooth and the lower

cylinders are about to separate, show that tan o = 1/3\ﬁ.

21. The axles of a four-wheeled railway truck of weight W are of
equal length and the distance between them is a. The horizontal line
which bisects each of them perpendicularly is intersected by the
vertical line through the centre of mass of the truck at a distance b in
front of the rear axle (b < 1a). If, when the truck is resting on level
rails, one of the front wheels, of negligible weight, is removed, find the
reactions on the other three wheels. (Oxford)

22. A smooth sphere, of weight 2W, and a uniform rod, of weight
W, are suspended from the same point B by two light inextensible
strings BA, BC respectively. A is a point on the sphere and C an
end of the rod. They rest in equilibrium with the mid-point of the
rod touching the sphere. If 6 and ¢ are the inclinations of BA and
BC to the vertical respectively, show that

sin ¢ = 2 sin B/cos (0 + ¢).

23. A uniform solid right circular cone, of semi-vertical angle
tan~! (1/2) and weight W, has a light inextensible string fastened to
its vertex and to a point on the rim of its base. When the string is
hung over a smooth peg, the axis of the cone is horizontal. Find the
length of the string in terms of the radius of the base of the cone, also
the tension in the string.

24. A smooth circular cylinder, centre O and radius a, is fixed
with its axis horizontal and parallel to a smooth vertical wall. The
distance from the axis of the cylinder to the wall isd. A uniform rod
length 6a rests on the cylinder with one end B touching the wall (B
lower than O). Therodisin a vertical plane at right angles to the axis
of the cylinder. If the rod rests in equilibrium at an angle of 45
degrees with the horizontal, find d in terms of a.
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25. A solid uniform hemisphere, of radius 13 cm, rests in equili-
brium with its curved surface touching a rough horizontal plane
and a smooth peg at a height of 8 cm above the plane. Show that the
reaction at the peg is inclined at sin ~! (5/13) to the horizontal and
that u > 4/9.

26. Two equal uniform rods 4B, BC, of weight W and length 2aq,
are rigidly jointed at B with /_ABC = 90 degrees. AB rests with a
point P in contact with a rough horizontal peg, coefficient of friction
u = 3/4. Show that 94/8 < AP < 154/8.

27. Two uniform rods AB, BC, each of length 2a and of weights
3W and 4W, respectively, are smoothly jointed at B. The end 4 is
smoothly jointed to a fixed point. The rods are in equilibrium with
ABC horizontal and BC supported at a point D. Find the distance
AD.

28. A framework ABCD consists of four equal rods, each of weight
W length 24, freely jointed together. It is suspended from A and
prevented from collapsing by a light rod of length 2a joining B and
D. Find the reaction at C and the stress in the rod.

29. Two smooth uniform cylinders, each of weight Wand radius a,
rest, touching each other, on a smooth horizontal plane. A third
equal cylinder is placed symmetrically on top of the other two.
Equilibrium is maintained by an endless elastic band passing round
all three cylinders. If the two lower cylinders are on the point of
separating, find the tension in the band and the reaction between an
upper and lower cylinder.

30. A smooth hemispherical bowl of internal radius a is fixed
with its rim horizontal. A thin uniform rod of length I weight 2W
rests with one end A4 in contact with the curved surface of the bowl
and the other end B projecting over the rim. A particle of weight Wis
attached to the rod at B. By taking moments about the point of
contact of the rod and the rim of the bowl, show that for equilibrium
to be possible the maximum value of ! is 3¢. When the rod is in
equilibrium inclined at an angle 0 to the horizontal, show that
3acos20 = lcosf.

31. A uniform rod AB, of length 2a, rests inside a rough fixed
sphere of internal radius 3a. The rod lies in a vertical plane passing
through the centre of the sphere. Prove that, in the limiting position,
the rod is inclined to the horizontal at an angle tan™! 9u/(8 — u?), u
being the coefficient of friction.

32. A mast, of length 3/and weight W, is hinged to a point on level
ground at O and held upright by three ropes attached to its top P.
The ropes are fastened to points A, Band C on the ground such that
AO = BO = 4land CO = 3I. Also angle AOB is a right angle and
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CO produced bisects angle AOB. Show that the tensions in the ropes
AP and PC are in the ratio 5:8.

If the tension in PC is 1 W, find the reaction at O.

33. A step-ladder consists of two equal legs, hinged at the top, the
centre of gravity of each leg being at its mid-point. It stands on
smooth level ground with a taut cord joining the points one-quarter
of the way up each leg. Show that, if a man whose weight is twice the
weight of the step-ladder stands three-quarters of the way up one
side, the tension of the cord is quadrupled. (London)

34. Five equal light rods are freely jointed together to form a
rhombus ABCD and its diagonal BD. This framework hangs freely
from A weights of 4 and 2 kg wt. hang from B and C respectively.
Prove that BD is inclined to the horizontal at an angle cot ™' (2,/3).
Show also that the tension in DC is three times that in BC.

(London)t

35. A heavy uniform sphere of radius a has a light inextensible
string attached to a point on its surface. The other end of the string
is fixed to a point on a rough vertical wall. The sphere rests in
equilibrium touching the wall at a point distant h below the fixed
point. If the point of the sphere in contact with the wall is about to
slip downwards and the coefficient of friction between the sphere
and the wall is y, find the inclination of the string to the vertical.

If 4 = h/2aand the weight of the sphere is W, show that the tension
in the string is (W/2u)(1 + p?)'2. (London)

36. Two uniform cylinders, each of same radius but of unequal
weights W, and W,, rest with their axes horizontal on a rough
inclined plane. The two cylinders are in contact with their central
sections in the same plane, and the cylinder of weight W, is upper-
most. Show that all the frictional forces on the two cylinders are
equal and hence that W, > W,.

If p 1s the coefficient of friction at both points of contact with the
plane and if the inclination of the plane to the horizontal is less than
45 degrees, show that

U= (W + W)W, — Ws).

37. A uniform rod of weight 4W and length 2a is maintained in a
horizontal position by two light inextensible strings each of length a
attached to the ends of the rod. The other ends of the strings are
attached to small rings each of weight W which can slide on a fixed
rough horizontal bar with which the coefficients of friction are each .
Show that in equilibrium the distance between the bar and the rod
cannot be less than 44/5, and find the greatest and least possible
distances apart of the rings. (London)
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38. An oblique cone of uniform density has a circular base of
radius g, the perpendicular distance of the vertex from the plane of
the base is b and the inclination of the axis to the plane of the base is
45 degrees. If the cone is placed with its base on a horizontal table,
find the condition that it will remain at rest.

If the cone is placed with its curved surface in contact with the
table, show that it will not tilt over on to its base if

4a? + 2b% > 5ab. (London)

39. Two parallel rails /, and I, lie fixed in the same horizontal
plane, the distance between them being 54. A uniform rod, of length
16a and weight W, is placed on the rails. It is at right angles to the
rails with its centre distant 2a from I,. A force kW is applied hori-
zontally and at right-angles to the rod at the end nearest [,. If k is
steadily increased from zero and the coefficient of friction u is the
same at both points of contact, find at which point slipping first takes
place.

If the rod remains in equilibrium when k = 4, find the range of
possible values of u.

40. Two uniformrods AB, BC, each of weight Wand length 2a, are
smoothly hinged at B and rest in one horizontal line on supports at P
and Q, where PB = x and BQ = y. Prove that

1 1 2
+

and that y > 2a/3.

If the supportat P cannot withstand a load greater than 2W, prove
that y < 4a/s. (J.M.B)

41. Two smooth fixed planes, each inclined at an angle a to
the horizontal, intersect in a horizontal line which is at the bottom
of the planes. Two identical uniform heavy rods AB and BC,
freely hinged at B, rest symmetrically with the ends 4 and C one on
each of the inclined planes. The plane of the rods is vertical and
perpendicular to the line of intersection of the inclined planes. If
each rod makes an angle 6 with the downward vertical, show that
tanf = 2tan .

If, instead, & = 60 degrees and o = 30 degrees and equilibrium is
maintained by a light inextensible cord joining the mid-points of the
rods, show that the magnitude of the action at the hinge is twice
that of the tension in the cord. {London)

42. Oneend A of a uniform rod AB, of length 2a and weight W, is
smoothly hinged to a point of a vertical wall. The rod is kept in a
horizontal position by a weightless inextensible string fixed to the
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rod at B and to a point C of the wall which is vertically above 4. A
weight w is suspended from the rod at B. If the reaction at A is
perpendicular to BC, prove that

AC = 2a./{1 + 2w/W}

and find the reaction at A4 in terms of W and w. (WIJ.E.C,, part)

43. A uniform wire is bent to form a circular arc subtending an
angle 2o at the centre. Prove that the distance of the centre of mass
from the centre of the circle is (r sin «)/x, where r is the radius.

A uniform wire in the form of a semicircle of radius r rests against
a smooth vertical wall and is in a vertical plane perpendicular to the
wall with its middle point in contact with the wall. It is kept in
equilibrium in this position by means of a light string of appropriate
length joining a point B which divides the length of the wire in the
ratio 1:3 to a point 4 on the wall. Explain how to fix the direction
of the string and prove that it makes an angle ¢ with the horizontal
where

T

tan @ =m

If the weight of the wire is W, find the reaction at the point of
contact with the wall. (J.M.B)

44. Show that the centre of gravity of a uniform triangular lamina
coincides with that of three equal particles, one at each vertex.

A uniform lamina of weight W is in the shape of a convex quadri-
lateral ABCD in which ABC is equilateral, AD = CD and the angle
ADC = 90 degrees. The lamina rests in a vertical plane with DC in
contact with a horizontal table. A particle of weight W’ is attached at
B. If the lamina is about to topple, show that

W =43/3 + DW. (London)

45. A uniform circular cylinder of weight W, whose axis is
horizontal, rests on a fixed plane inclined to the horizontal at an
angle o. A uniform rod, also of weight W, rests in a horizontal
position with one end on the highest generator of the cylinder and the
other smoothly hinged to the plane. The rod lies in a vertical plane
through the centre of gravity of the cylinder and perpendicular to its
axis. The system is in equilibrium and the coefficient of friction
between the rod and cylinder and also between the cylinder and
inclined plane is 4. Show that the normal reaction of the rod on the
cylinder has magnitude $W. Show also that the frictional forces
acting on the cylinder are equal in magnitude.

Hence show that u > 3 tan }a. (J.M.B)
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46. A uniform lamina of mass 3 1b, in the shape of an equilateral
triangle of side 3 in, is suspended from a point by three light in-
extensible strings of length 5 in, 4 in, 4 in, attached to the vertices of
the lamina. Find the tensions in the strings in the position of equili-
brium, and the angle which the lamina makes with the horizontal in
this position. (Oxford)

[A “Ib” is a unit of mass and an “in” is a unit of length. Give your answer in
“Ib wt.”’]

47. Three weightless rods AB, BC, and CD of respective lengths
I, 2a and [ are smoothly jointed at B and C and carry equal weights
W attached to 4 and D. They hang in equilibrium symmetrically
over a fixed smooth circular cylinder, whose axis is horizontal and
whose radius is a\/3, so that they are in a vertical plane with BC
horizontal and AB, CD in contact with the cylinder. Prove that, if
BC is also in contact with the cylinder, then ! < 4a and find the
reaction of the cylinder on BC.

If ] > 4a, show that the angle § made with the horizontal by ABis
given by

lcos® 0 = a(/3sin 8 — 1). (WJ.E.C)

48. Show that the centre of gravity of a uniform thin hemispherical
bowl of radius a is at a distance a/2 from the plane of the rim.

The bowl is placed with its curved surface in contact with a hori-
zontal table. A uniform smooth rod whose weight is half that of the
bowl rests with one end in contact with the smooth inner surface of
the bowl and with a point of the rod in contact with the rim. In
equilibrium therod and the plane of therim each make an angle 8 with
the horizontal. Show that # = /8 and find the length of the portion
of the rod protruding from the bowl. (London)

49. The ends of a light elastic string of natural length 2b and
modulus of elasticity W are attached to the ends of a uniform rod of
length 2b and weight W. The string passes over a fixed smooth
circular cylinder of radius a(< b), the axis of the cylinder being
horizontal. The rod rests horizontally below the cylinder and the
acute angle between the rod and each straight portion of the string
is a.

(@) If the rod is not in contact with the cylinder, show that
tan o/2 > a/b and that o satisfies the equation

b(cosec o — 2sec o + 2) = 2a(a — tan o).

(b) If the rod touches the cylinder, find the reaction at the contact
in terms of W, a and b. (London)
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EXERCISES

50. Auniformrod 4B, oflength ./a? + b? rests withoneend A on
a rough horizontal floor and the other end B on a rough vertical
wall. A is distant g from the foot of the wall and.the plane of the
rod and its projection on the wall makes an angle 6 with the floor. If
the ground is rough enough to prevent slipping at 4 and the coeffi-
cient of friction at B is u, show that

u = bcotl/a
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APPENDIX

Radial and Transverse Components

For motion in_two dimensions the use of (r, 8) coordinates and
hence of #and S, where # is unit vector in the direction of # and S is
unit vector perpendicular to f is important.

%%

Figure A.1

Since #is a unit vector d#/dt is a vector perpendicular to #in the
direction of 8 increasing and of magnitude d6/d¢ (from the result of
Section 3.7).

df/dt = 68 (where 0 = d6/dy). (i)

Similarly Sis a unit vector. So dS/dtis a vector perpendicular toS
in the direction of 0 increasing, which from Figure A1 is in the direc-
tion of —#. Also its magnitude is d6/dt i.e. 6.

(dS/dr) = —6¢. ... (D)

Consider a particle P whose position vector with respect to 0 is r.
As r varies P describes a plane curve. If the modulus of r at any
time ¢t is r we have

r=rf
dr dr, d#
o @ TTa
= ## + rf8 [from equation (i)] ... (iii)
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APPENDIX

Thus » has a radial component of magnitude 7 and a transverse
component of magnitude r6.

do  d() d(réS)

f=a~ @« T @
=ii~+r'9+r'9$‘+r(9'§+r6§
de dt

(using the chain rule of differentiation)
from equations (i) and (ii)
f=#t +i0S + 18 + rBS + ré(—0#).
Collecting up like terms
f=@F— rO*F + 270 + rf)S. N (1))

Thus fhas a radial component 7 — r0? and a transverse component
270 + 1.

Exercise. Prove that the radial and transverse components of the
acceleration of a particle moving in a plane can be expressed in the
form:

i (de\r o 1d(2do/dn
dr? "\ar dt

In the case when r?(df/dt) = C (a constant) and r = 1/u, show that
the radial component becomes — C*u?(d?u/d6* + u).
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SOLUTIONS

EXERCISES 1

1. kgm/s 2. m?

3. m?, kg/m? 4. Ns
5. kg m? 6. 175N
7. 300 000 kg, 5 m/s, 50 000 N, 510 000 W

Exercises 2a

1. Vectors: b, e,j. Scalars:a, ¢, d, f, 8. h
2. a and d are equal and opposite
a and e represent two or more vectors
3. (a) 105° (b) 30° (¢) 105°
(d) Fyand v,; vy and v,
F,and d; F; and v,
(¢} Fyand F;, F;and v,
5. 12-5km at an angle tan~ ! (3) E. of N.

Exercises 2b

1. 7 N at an angle of 38° 13’ to the 8 N force.

2. 1746 N at an angle of 9° 56’ to the 120 N force

3. 17 units at an angle of 28° 4’ to the 15 unit force

4. 8 knots N. 36° 52" E.

5. 3./43 km/h at an angle 7° 35’ with the forward motion of the
ship

6. 97° 11 7. 72°33’; 3-15min

8 3N,2N 9. 1Q| =12

10. 6N, 12N
Exercises 2¢

1. (@) —5,0 () —15,15/3
() 6/2, —6,/2 d) —4/3, —4
(e) 0, —25 (f)4./3, 4

2. 50, 50./3 cm/s
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3. Vertically Rcosa + pRsino — mg
Horizontally +(Rsina — gRcos a)
4, Fcos(45° — 0 + «)and Fcos(45° + 0 — o)
or Fcos(45° — 0 — a)and Fcos(45° + 0 + o)
5. Horizontally F sin 8; vertically F cos 8; yes
Exercises 2d
1. 1-2km/h, N. 3° W. 2. 984 N, N.85° 50" E.
3. 281 m/s? at 3° 31’ to the upward vertical
4. cos™ (-4
S. \/5 units at 30° to the third force
6. /201-1 units, N. 100° 46’ W.
EXERCISES 2
1. 13-75 at 49° 6' to the force of magnitude 15
2. 9-898 3. 936 km/h, N. 57° 50' W.
4. 318-6 km/h, N. 157° 31" W. 5. 11-8 km, N. 82°E.
6. 284-6 km/h, 62-5 km/h
7. 2/TNat tan™} 3\/3 to BC on the opposite side to 4
8. No 9. 106° 16’
10. 11-55m 1. 5
14. 20 km/h
17. \/§F along the diagonal of the cube from the corner P
18. (a) P./3 (b) 150° (¢) 120°, 60°
Exercises 3a
2. (a) 2 b) 5 (c) 3
(d) 4-64 () 2:95 ()5
3. Yes
4. a and b parallel and in the same sense
6. 120° 7. 120°
9. —a, b, —(a+ b) 10. b—a
Exercises 3b
1. A= +|al/|b] 2. m=n=90
6. (a) 3a (h) —a (c) 0
7. (@) x=56—a
(b) x = 3%a + %b — 5
8. 24D newton where D is the mid-point of BC
9. 24B,24C
10. FAp—q,CDgq — p, DC —p, EF —¢q

EXERCISES
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SOLUTIONS

Exercises 3¢
1. (a) 10i + 10j (b) —10i — 10j
(©) =532 +3j (d) 8i — 8
() —10/3i — 10j

2. (a)y 3+ 2f (b) 3i +j (¢) 10i/3 + 2f
3. (@) —4i + 4j — 10k (b) /20
() i—k (d /58
4. 3,3, -%.9:2i/3 —j/3 + 2k/3
5. 23+ + k)
6. AB3l+_],BCt—7j,CD—111+5_],DA71+]
7. AB4i + 6j, BC3i — 2, CA -7i — 4i;
52, /13,./65
8. 166 m, N. 12° 26’ W.
9. SCosd)cosOt+8cosd)sm9]+8sm¢k

10. ABl—2]+3k BC1+2]+k CA —2i — 4k;

VT /6.0

Exercises 3d

1. (a) 2ta (b) —aji* () 0
(d) 0 (e) 6ta

2032+t + 3+ (L +4+12 41360 —j,i— (2t + 33,
5

3. r = t?a/2 + ¢t + ¢, where ¢, and ¢, are any two constant
vectors including 0

4. r = 3a/6 + 1°b)2 5. 3asin 0 cos

6. (@) 10cos 5ti — 15sin 5tj, — 50 sin Sti — 75 cos 5t
by 15,50

7.2 —j2 8. —sin i — cos

9. r=(1—1tHi+ 24§

Exercises 3e

1. =1, —=6,0 2. —1, =320
3. +1, +3 5.135°
6. cos™ ' () 7. 2cosu — usinu

8 33 — 12 4t 6t —j i — (2t + 3t%)j

9. 5t — 615,10t — 30t%, i — j

10. (@) a> +a.b+a.c (b) a* — b? () a*> +b* +2a.b
11. either b = c or a is perpendicular to b — ¢

13. —17i + 23j — Tk
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EXERCISES
Exercises 3f

1. (@) a x b (b) b x a ()0
(d) 2b x a

2. (a) —3k b)) —3i+ 6

3. They are all vectors

(a) 12 units vertically up (b) 16 units vertically down
(c) 12\/3 units vertically up

4. a = b + kx (k a constant)

5 (@) § — 13j — 9k (b)y —7i — 25 + Sk

7. 3G — j + k) kg m?/s

8. 124 Nm, where A is upwards out of the paper if ABC is
anticlockwise

9. 5a x b,6a x b 10. 60/7

11. (a) 2Pa (b) 2Pa
(c) 4Pa d 0

Exercises 3g
I —i+9f 2. 1:2,3|3b — 8al/5
3b+c—a 6. 4b/3 — a/3,3a — 2b

8. (a+b+c)3

Exercises 3h

2. 3a
4 (@) r=t(—i+ k)
By r=@i—j+k+s(—i+k)
() r=(i—j+k +uGi—3—k
D3+ 5 — Tk 6. p=—2,4( —j+ k)
cos™ ' (33)
x—ai/by =y —ayb, =z—a3/by =t
. 2a+ b,3a—2ba+ b

O 00 =1 ta

EXERCISES 3

—

. DE = —p/2;EF = (p — q)/2; FD = ¢q/2

4. (a) a=2b ) a= —5b
(c)axb=0ora=kb (d F,+ F, =ka
() x.y =0 (I P+Q@=—-R-S

@xxy=zpxz=xzXx=y
hHha.b=0b.c=0,c.a=0

5. No, the reciprocal of a vector has not been defined
6. P=(R - Q)3 7. A=3%o0r —%
8. (i — 2)\/5 —1//5 9. 22 units
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12,

13.

16.
19.
21.
23.
24.
26.
27.
28.
30.
32.
33.

34.
36.

38.
40.

SOLUTIONS

(@) (G — 2 + 3k)//14, (4 — 3j — k) /26,
(5i — 5 + 2k)//54

b) 7 (©) 7//26 (@) ) cos™ ! (7/./234)
4:1 14. cos 1 () = 70° 32

cos™ ' (—1/5/13) 17. la| = V2Bl

7 units, 7 units 20. 35,15

v = 3asintcost

(@) —2i+j+k (b) k () 1

a2./3 — 1) 25. —8j + 16k, 3%

3./3Pa; Pa

r=4i — 2j + 2k + t4i — j + 2k), 9 — j, 12i — 4 + 6k
=4b=—-2,c=+1 29. 1
(@) Ma+b),(1 — b +a/2 (b) 2,4i +j— 2k, 3, &
21+3],6l+4], —i+ 6

(a+b—c) b+3(¢ic"+bc)—1
L3lsr—(a+b—c)+u(b><a—3cxa—3cxb)

(a) a(dr/de). (d?r/dt?) (b) (a.b)dr/dt

(c) (a.dr/dt)b (d) 2r.dr/dt — 2dr/dt. 1/r?
(e) ¥ x d?r/dy) (f) (dr/de)? + r.d%r/dt?
BP:PC = 2:3,40:0C = 1.3,k =%

100E

(@) i+ 2k + t[2i + 2 + kI3
(b) 2ti/3 — tj/3 + k,cos 8 = (¢ — 6)/\/(18> — 12t + 36)

Exercises 4a

1. 27,40, 36, 27 km/h 2. 30, 28, 30, 22 km/h
3. 272 and 27-5 respectively 4. 3rd one
5. 30n km/h
Exercises 4b
2. 12 m/s, 24 m/s 3. 12km/h, 10{3km/h
4. (a) 48 m/s (b) 44m/s
(¢) 96 m/s (d) 80 m/s and 160 m/s
5. 134 km/h 6. 20./3m/s, —20,/3m/s, 10m
7. 51, 501, 5001, 5cm/s
8. (a) 50m from A after 5s  (b) 30 m from A after \/—1'5 ]
9. 59 min 10. 1620 h

Exercises 4c

3.

65cm/s, S.tan" ' 8 E 2. |8| =1, |v| = 2, acircle
12./10 m/s, S. tan "' 3E. 4. (12,2)

456



5.
6.
7.
0.

EXERCISES

(7. —3),5/2
( 7 0), (68, —11),[5 + 4¢,3 — 21]
m/s 8. 1m, (4 + cos? 2t)m/s
= 4ax 10. |s| = 1,]v| = 4 + 9cos?2t

Exercises 4d

1.

V34,37, 5 2. 24-4km/h, S.35° W

3.7+ 2, —8i + 7, 12i — 2

4.

SRR

1

3\/3 km/h at an angle tan~' 2 with the direction of the first
man

10-6 km/h 6. 149 km/h from S. 14° 38’ W.
d/(1 — A%)/u 8. 150 km/h, West

. 30\/5 km/h from S. tan ! { E.
. After 1 h, 4km

Exercises 4e

1.

3
5.
7. 43%rad/s, 2 m/s, No

20m/3, 151/2, 3 2. 12, 30m, n/30 m/s
. 100, 47 m/s 4. /43 200 rad/s, 4 0007/27 m/s
25\/3 m/s 25\f3 m/s 6. 212 min past 4 o’clock
8.

100155 h

EXERCISES 4

1. 30, 45, 321, 30, 60, 384 km/h
2. 12:224,12:353, 12:45%, 13194 h
4. 101-2km, 21-1 km/h 5. 11-3h
6. t=65=4d1=>505s 7. 10,/2, N. 45° W.
8 i+ 9j,No 9. 16 min ‘
10. ~2i — 6jkm/h from N. tan"! () E.
11. N.36° 52" E., 989 km 12. 2224 m, 19 min 12s
13. 10:6 km, 0-536 h 15. 13 m/s, N 112° 37" E., 7613 m
16. 2./5i + /5, —/5i + 3/5, 4i + j, 21 min
17. 10knots, S. 60° W. 18. 3:4
19. 0-5h, 570 km 20. After 1 h, 5i + 95
21. Istand 3rd ships at 2 — 20, 2nd ship arrives at 2 — 30-77

22,
24.
25,

26.
28.

a/(4u? — 20%)/w?® — v?)h 23. 28° 41
61-48 km/h towards N. 42° 20’ E.; due W.
{(a) S.40°32’W,, 526 min (b) 250 km/h
() V2 = 500 km/h

4-5km/h 180°; 6:1 km/h 305°

2:51h
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SOLUTIONS
29. (a) (x2 — X1), (2 — y1)  (b) dCxz — xy)/dt, d(y, — y,)/dt
A, relative to A4, (d/ﬁ — uyt)
(d/y/2 + ust)
A, relative to A, (\/§d — uyt)
(\/i d — ust)
31. 8m/s, 4m/s 32. tan"1(0-5)
Exercises 5a
1. (@) 27m/s,90s (b) 30m/s%, 65

(¢) 21 m/s, 4s (d) 1224 m, 42 m/s
2. 4m/s? 3. 50s, 50 m
4. s, = 1800m,s, = 1200m 5. 0-10 m/s, 0-24 m/s?
6. 125m 7. 12m/s, 2 m/s?
8. After 8s, 80 m from A4 9. 146 s

10. f= (b — 2a)/n*;u = (4a — b)/2n

Exercises 5b

1. It accelerates uniformly at 5 m/s* for 10s. It then decelerates
uniformly at 2-5m/s?* for 40s. Initial velocity 50 m/s;
maximum velocity 100 m/s; Distance covered 2 750 m

2. 200 m 4. 2520 m, 19 m/s, —0-2 m/s?

5. 376 m, 514 m, No

Exercises 5¢
1. (263 + 9t3)/6 m/s, (t* + 6t%)/12m, 126 m/s; 216 m
2. 41 — e'®%)/(1 — 4e'*%)m/s 3. k = Tg/16V?
4 t=log. s/15+s/75 + C 5. 20,/2,100
6. 4000( + 2)

Exercises 5d
1. (@) —0-789 m/s? + 1-51 m/s
(b) 1-89 m/s?, 0628 m/s

2. (@) \/571 seconds (b) = seconds (c) n/10 seconds
3. 7 seconds, 5 m, 20 m/s? 4. 3m, Sﬁ m/s
5. 6,/2m, /27 seconds 6. 15/2m/s, 4-5m/s
8. S units, 5 units 9. 6./2cm, 16s
10. =, 5w seconds, 7x seconds
EXERCISES 5
1. 192m,8s 2. 4cm/s, 6 cm/s?
3. Yes
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10.
11.

12.
14.

15.

18.
19.
20.

22.
24.

25.
28.
29.

30.

10

12.

13

00 N AW

EXERCISES

S.H.M. about x = C/n? as centre
33m/s, 11(3log3 — 2)s 6. 23 min, 11-04 km

C = —1/2k? 9. 100 m

239 m, 48 m/s

40 s after it starts to decelerate; 90 cm/s

2./(g/a) 13. 7/./2 m/s, 3675 m/s?

8n cm/s, 4n* cm/s?
(t50, + 2t,1,0, — 110,)
tita(ty + t3)

(t%@l + 2t1t201 - t%GZ) 16. (a) W= (n2 - nl)/900 reV/SZ

2(t192 — t201) ([7) 15(3”1 - nZ)/(nl - nz)
586s
57-6 km/h, 855 km h~! min "
08 m/s, 20 m 21. 60 km/h
t = /(a/2g), 9a/4 23. 145s,66%m, 3-2,44, 116

VIR + L L sio + o fi + ) i fe
69 m/s, (13 + 4,/10)/3m/s 27. 77 s

3u, 3-5u, 4u?/8

() 455, (b) 724

79/22, 35/22, 21 /3/22, 11%

EXERCISES 6

1 600 N 2. 4m/s’
160 kg

. 0:64 m/s?, S.H.M. about O of period 2n/8 seconds

5m/s?, \/@ s 6. 2:3m/s?

At rest or moving with uniform velocity

. 3 m/s* parallel, 1/\/3 m/s? perpendicular
. 4m/s? between 416 and 320 N forces at tan ™' (5\/3/11) to

416 N force

8i + 16j m/s? 11. 2mta
—map>[sin pti + cos pt(2j + k)]

2N

Exercises 7a

1.
2.
3

Tension (T), weight 3g newton also T = 6() newton
Normalreaction, weight Sgnewton, horizontalforce 13 newton
Normal reaction through centre weight 3g newton
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10.

SOLUTIONS

Normal reaction (Nr), weight 2g newton, horizontal force (Q),
frictional force (F) and F = Nr/2

Total reaction at ¢ to the normal, weight 8¢ newton and
¢ = 30 degrees

Tension (T), weight 2g newton, and T = 980(;) newton
Tension, weight mg, normal reaction outwards through the
centre

0, weight mg, normal reaction N,, friction up the plane (F)
and F = uN,

On the 3gm mass: weight 0-003g newton, normal reaction,
tension, friction

On the 2gm mass: weight 0-005g newton, tension

On particle : weight 3g newton, normal reaction

On wedge : weight 7g newton, normal reaction with particle,
normal reaction with plane

Exercises 7b

1. 1 /\/g m/s 2. remains at rest
3. 11m/s 4, 25m/s?, nﬁ seconds
5. 527s 6. (t> + 1)/2m/s%, 6 m/s
Exercises 8a
1. 80m 2. 149 c¢m, 198 cm/s
3. 515s 4. S0m
5. 12000 N 7. 1//7s, /Tm/s
8. 12 9. Lts,3s +14m/s
10. 721 N 11. (u? — v?)/2g(sin a + p cos a)
12. 2:18 m/s?, 1-09 m/s 14. 21//2 m/s, N.W.
Exercises 8b
1. 1000m 2. 383 m/s
3. 0515N 4. 4./10/7s
5. u*2ug 6. 02s
7. 2375m 8. 1800m
Exercises 8c
1. 07m/s 2. 237s
3. 295m/s 4. 49 m/s?> downwards (9 kg)
2-45 m/s? downwards (3 kg)
12:25 m/s? upwards (1 kg)
5. 507 m/s? 6. 05g,1s
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EXERCISES
EXERCISES 8

1. 6 m from O in the direction of I

2. 4i + 8m/s; 8 + 16 m

3. 49m/s 4, 3s

6. mg(4m + M)/3m + M); 2mg(2m + M)/(3m + M)

7. East,2m 8. 1:08 N.

9. 5m 10. 540N, 21-6 N; 440N, 17-6 N
11. 22 + /3)m 12. 6i + 3j + Sk
14. 0:2g m/s?, 12 m, 14,/3/5 m/s
15. 60mg(1 + 1)/49 17. 0:52./3; /(5h/g)
19. 2m/s, 8i + 8§ m 20. 1-5mg

21. 400 N/t,75s; 1in 103 22. 37g/166, 7g/166, 11g/83
23. g/49,02m
24. vertically downwards 780 cm/s, \[6/ 12s

25. 20/7 m, Tu/54 26. —g/17, 48mg/17, 24mg/17
27. 40N, 380 N, 1 800 m 28. 22u/g
31. 0426 m/s?, 375N 32. x=2
Exercises 9a
1. 25m/s 2. 2n./(l/g), 210/n
3. n/3s 4. /205,20 cm
5. 765 cm/s 6. /10N
7. mg/x 8. 1, 0257 /(l/g); 0-5./(2¢g])

Exercises 9b

1. 0:2(1 + =/2)s 3. 27\ /(a/27g); 0-5./(3ga)
5. (4 + 3n)/165s
6. 15cm above the table; 17-5cm

EXERCISES 9

d/k/m 2. n?/100 N, Zero
2n./(R/g) 4. | + u/(ml/A); 0-5n./(ml/2)
2n/am/2T 7. 27/7s, 1-4 m/s

(m + M)gl/a, Mg(a + b)/a, Mg, zero
/78, Scm, 14,/21 cm/s

(10 + 5\/5) m from A4 on the same side as B, Sﬁ m/s towards
A,

11. = /(l/18g) 12. /(la/3m)
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13. v/n, 1/nsin~ ! (hn/v)
15. At O where AO = 3a, 2n./(a/5g), «/(95ag), zero
17. 2n/(I/g), U/(l/g) 21, (4n/21 + 2./3/7)
22. /(154ag)
23. Point of trisection nearer M, 0-51, 2n, /(l/3g)
25. X = —2gx/3a; n/(3a/2g), 2mg, 4mg/3
26. 27n./(4a/52) 28. 2r/(2l/g), 2m./(21/9g)
EXERCISES 10
1. 12 m/s 2. J(W? + ks?/m)
5. 1922 m, 9m/s 6. 2,/6/3 m/s
7. (a) u — 0-5kyt?, ut — k,t3/6
(b) ue u(l — e~*nyk,
(c) JV(Ww? = k3x 2) ucos (t\/’ ); period 2n/./k;
8. 0 9. x=0, +27r/p
13. S = qe* W2k
1
14. ktw?/(1 + ktu), ut — Eloge (1 + ktu)
16 ilog (a — bu?)la — bu3)
. 2b € 1 2
17. 18. x = g(1 — cos wt)/3w?
19. a(1 + log. 2) 20. 40cm
21. ﬁloge(l + ku?/g); tan~ 1(u,\/ljg)/«/kg
1
22. ¢ log2 + NE) 25. (u + a/n)n
(M + m)V?
28, ————log.4/3
30 = mg 08V
1 1
30. ——log. (1 + ku?/p); tan~* (uy/k/u)
2kg g/ ku
Exercises 11a
1. 30° 6,/3 kg wt. 3. 50 g wt.
4. 4W/3, W, S. 6kgwt., 3kgwt.

6.

SOLUTIONS

F =170//3 kg wt, R = 140/,/3 kg wt.
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EXERCISES

7. 35kg wt. 8. Skgwt, 12kg wt.
9. 0845 W 11. 124gwt.
13. Wsin(x + A)sec A 15. W /72

Exercises 11b

1. 2W/ /3, Wi /3,2W//3 2. Wsin(x + ) when 0 = A

3. W/ 4 u=8—13./3
5. 9° 24’ 528

EXERCISES 11

1.i—j 2. Wsin 8, Wcos 6

3. Wsin 4 4, Wceos8/(2cos 8 — 1)

5. 6ngt., 80 g wt. 6. F = 6kgwt, T=5kgwt.
7. u =089 8. 44° 4

11. 52° 38, 3-86 W. or 7° 22", 796 W.

12. p = /32 13. 5 + 3/3W

15. W = 10kg wt., T,5 = 10,/3 kg wt,, Tyc = 10kgwt.,

Tep = 10kg wt. ’

18. The particles move up the plane

19. W, W. /3, 60°, 2W

20. T= Wsecf, R=2W,F = Wtan
21. 9W/4, 15W/4, W(Sf — 9)/4,TW/2
22. tan~ ' (3), 45°, tan~ ! (3) 23. 2um

Exercises 12a
1. kia.b + 2b%), k(a®> — 4b°), k(a +a.b—2b%

2.20J,451,65] 94-0J
4. 784 k] 5. 500 kJ
6. 24-5kJ, 345kJ 7.1029]
8. 953N 9. 38-89)
10. 709 kJ 11. 3920)
12. 175./33 13. —253,251,75]
14. 7-681]
Exercises 12b
1. 200kN 2. 21kW
3. 210kW 4. 600 gW
S. SRMu/18 6. v,0,/(20, — 1)
7. 202% Force de Cheval 8. sin"!(s%)
9. 368 W, 613 W
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SOLUTIONS

Exercises 12¢

1. 075 m/s? 2. 16kW
3. 7/200 m/s? 5. 14N
6. 0-256 m/s? 7. sin" ' (&)
8. 40 N/t, 72y m/s? 9. 995
Exercises 12d
1. /(u? + 2gh), No, No 2. 25m
3. Zero, (1 + \/g)m 4, v = 2@
5.1 6. 7./5m/s
7. 50m 8. 20/14 cm/s
9. 17-5cm
2gd . .
10. it mz)[m2 sin B — m, sin «]
2gd . .
11. — mz)[mz(sm B — ncos ff) — my(sin a — u cos a)]
12. 32,/15
14. v? = 2ga(M + m; — 2my)/(M + m; + m,)
15. 112 cm/s, Yes
EXERCISES 12
1. 21 m/s, 42 m/s 2.238001J,288001J
3. 294 m/s 4. 0563, 0441 N
5. 12N, 098 m/s
6. (a) 467 (b) —2:55 (¢c) —44-13
7. 306kW 9.a=b=%
11. n(n — )(a — )W/2 12. 15kW
13. v =12 14. 394m
15. 40,425 s 16. 321log. (39
17. k3(t® — 25t* + 150%)/3m  18. 34g/3J, 471 m/s
21. 155kN 22, 12u/5;%kg
23. 80 N/t, =45
25. SkN, (50 — 1-5t)kN, 12 m/s, 240 kW
26. 0-047 m/s2, 6:36 m/s 27. MV?log, (%/2H
28. M(2v® + V3)/6PV 29. YH/Rm/s
30 /3¢l \/2g! 32, 1552 m/s, 2841 s
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EXERCISES

Exercises 13a

I5Ns 2. 54i + 300 N's

1.
3. 7500N's
4. 12 m/s in the opposite ditection
5. 2Ns 6. 10m/s
7. 4Ns
8. 5000,/93 N s at 141° 3’ with the original direction of motion
9. 50Ns 10. 1-2,/15Ns
Exercises 13b
L. 2m/s 2. 7000kg m/s, 56 m/s
4. Smy/s, 511J 5. 45¢ kN

—mu/(M + m), Mu/(M + m)

Exercises 13c

Nl R e

10.

mMv/(m + M) 2. 6 Ns, 1-22m/s
2-4m/s, 120N's, No 4. 35m/s, 7Ns
1fm + M) 6. 06/ 2gh
5m/s, 5./5m/s, 5./29 m/s, I = 10N's
1./2/6, 1./2/3
. tan~ ! (tan 6/(1 + 6 tan? §)) with the bisector, produced, of the
angle BAC

Zs

Exercises 13d

L

2.

8.
10.

Both balls continue in the same direction with speeds 33 m/s,
5’8’ m/s

1st ball, 1042 m/s in reverse direction ; 2nd ball, 1} m/s in the
same direction

3. zero and 4cm/s; 4. 75
6.

(1 — eu/2,(1 — e*u/4,(1 + e)’u/4,all in the original direction
in which A was projected

3mu2/8 9. 2e— (e —2(e+ 1)
e=1%

Exercises 13e

L.
5.
7.

8.

A=8/3m/s,B=4m/s 2 tan"'(0-5)

19-6 cm/s, 24-0 cm/s 6. %

mu?/16

225./3 — /2 = 248 m/s, 075, /3 — 3,/2 = —294 m/s;

22-11)
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SOLUTIONS

. (17ga/177)'? .
. /13m/s, 2m/s, tan~ 1 (2,/3), 10N's

EXERCISES 13

72Ns 2. 100. 7 N
. tan~1(1-003) 4. 8°

679kW, 4-52 kN 6. 0-8 mV

T2N's 9. 2m/s, 3./73/5m/s

u, 4d/9, 12mu/5s 11. 23 m/s, 2§ m/s, L N's, 8¢
. distance e*u?/g(1 — €?); time 2eu/g(1 — e)
b w37 14. 4./2m/s, 23 m/s

34 my/s, 8t m/s 16. —30i cm/s, 6i cm/s, 0-0864 J
- 12m, 1/2./2m, 1/2,/2m, zero
. 2d4mp? 20. 35m, 417, 1161 s
.e=1% 22, uy = a,u; = aj?

- u(l — ne)/(1 + n); u(l + /(1 + n); u(l + ne?)/(1 + nj;

u(l — e?)/(1 + n)all in the original direction of projection

. 3u/4
Cu(l — e)/2;u(l — e2)/4; u(l + e)%/4
. Au/6 away from B; B at rest; C u/6 away from B

. V/16, 3V/16 31, (7i + 3j)u/8
. 4:3 35. a(l — e*™)/ue®* (1 — e)sin 6
- u/(13k% + 20k + 16)/4(k + 1);k =}

. mu /0751 + e)

. u = Vor V/3, velocity vector is Vi + Vjor 5Vi/3 + Vj

Exercises 14a

1.

O

PNV AW

Horizontal 24-5 m/s, vertical 0-97 m/s
Horizontal 5\/3/2 m, vertical O

30m

7-5m, 10,/3/7s,10,/3 m

10 000,/3 m, 10 000, /2 m, 10 000 m
32m,24m 7. /(2-5ag)

(@) 12km, (b) 2:25km, (c) 140,/5 m/s at tan"* 0'5 to the
horizontal

. 12,/10m/s at tan™ ! 3 to the horizontal

1125 m, 15,/2/75 [3:03 5]
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EXERCISES

Exercises 14b

2.
3.
4.
6.

u=35/2/4m, 0 = tan~* (%)
Riuax = 45m, 15° or 75°

(/3 = Dut/{/2

17930 m, 36:7 s 7. 333m/s

Exercises 14¢
1. 08 2. 45°

39.
40.

EXERCISES 14

20° 54'5, 69° 55’ 2. 120/21m
tan~ ! (%

sin™ ! (13)(18° 58'), 4-54 km

u* > R%*g? 8. 45m

R/T = u/[/2(cos #/2 + sin a/2)], yes

.tan"'(})

17-5m/s at tan~ ! ($) to the horizontal, 2% s
600 m, 17%s, 70./12 301 cm/s = 77-6 cm/s at tan™ ! (1-98) to
the horizontal

2sinalV,[V,cosa — Vil/g
cos~1(0:25) 24. V = 50 m/s

. R=2pq/g 28. dtan 6/(1 + e)

. 1325m 30. 595m/s, (3 + /2)m

. V2 > gk/[2n sin a(n sin o — sin B)] which is equivalent to
V2 > gh/[2nsin a(ncos a + cos f)]

.02 =g[d? + (1 + e)*h*))2eh

. 31V/8¢g 36. 45°
. PQ = 16,/5V?/125¢

r = utcos 0i + (utsin 0 — 3gt?)ji/2(/3 — Dut
(@) V?)2¢ (b) 3V?/2¢g
e = (cotfcota — 1)

Exercises 15a

- NV RN

-1

13 m/s? at tan~ ! £ to the radius

. 33 m/s? towards the centre

20 cm/s

50 m/s? towards the centre

572 m/s? towards the axle

10-74 m/s? at tan™ ! &2 to the radius

- k772
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SOLUTIONS

Exercises 15b

1
2
3
5
8

10

. 675 N towards the centre

. Apply a force mv?/r always towards O

. 256N 4. 96N

. 45/7* cm, 0-3927°N 7. 60°,0:7,/6 m/s
. 80N, 64 N 9. 163

N 11. 2:05 x 10%'¢

Exercises 15¢

0 N LN

. 07 m/s, 0735 N

. 75g mN, 525g mN (both tensions)

. m(g — u?/8r) 4. cos™'%
-11

. 7\/5 m/s at cos ™~ ' § with the upward vertical
. 57t m/s, 5¢ N, no 7. a, zero

. /[0-5gr(4 cos § — 3cos 26 — 1)]

V/0-5mg(3 — 4 cos 6 + 3 cos 20)]

EXERCISES 15

. e/m = v/Hr 2. tan~' 05 to the horizontal
h = g/w?, no 4. 2m/s
631m 7. 7/7/5 m/s
Scm 9. 60°
0:5./ga, 1:5,/ga 11. 60°
. 30N 13. 1-4m/s, 1-4,/2 m/s, 7 rad/s
. 02/3m 15. 19mg/3, mg/3, 10a/3
. 415 rev/min 17. 4
. V(g/3a) 19. 3mg//2

. 5a/3, Ta/3, 5a/2
. 145N's, 277 m/s, 251 N

. 2bmg/(a — b) + 3mgcos 0

. ga(2\/2 — 1), mg(\/2 ~ 1)
30. /(5ga), 140a/81

Exercises 16a

1. (4a + Sb)/6 2. (6i — 4 + 10k)/6
3. (a, 2a), none

5. Zm%’tf / Tm, 53i + 46j units
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EXERCISES

Exercises 16b
1. i +jm/s?
2. 200 m/s? at tan~ ! 3 with AB, unaltered
3. kg, 0-5kg in the direction of the force. Acceleration of
A—yes, C of M—no
5. —20k m/s, — 20k m/s

Exercises 16¢

. —i—j—2Nm 2. a2,/3-1)

. 12i — 60j — 36k kg m?/s

5ma*w, sum of the moments is zero

. Velocities t%i + tj, 2ti + t% — 3tk ;
displacements £3i/3 + t%j/2, t%i + t3j/3 — t3k/6;
angular momentum t*(j + k)/3

7. 2FaT

WA W

EXERCISES 16

1. On the diagonal through 0 8\/5(1/7 from 0.

3. 0:6td + 0-8t%b, 3d + 166N

4. Aim(2n + 1)/3

5. O75i — 0-5/m/s, 3i — 2jkgm/s -

6. Only if friction is limiting and the particle moves
7. 2i + 3j, zero, no

8

. (@) 4 + jym/s () —192k kg m?/s
(c) 4N (d) —80k Nm
10. 1kgm?/s

11. Speed is reduced. The further from the axis the lower the
angular speed

13. 2i + 5/cmys, 5i + 7jem/s, — 5i + jcm/s, — 8 cm/s

14. (@) 1'5mv? + ma’w?
(b) 2ma’*wd where 4 is perpendicular to the plane of rotation
The vector sum is zero, the sum of moments is zero ;
“dynamic” equilibrium.

15. Top slows and its axis moves in the direction of the force

Exercises 17a

. P=1i 2. 3 units along x = 13
3.4+ k20 + 2 4. —2F,F./3, —4F

5. 6/2Nat45° to BA36Nm

6. 16,/3 N along FD . 7. 2F /29, 5y = 2x + 36
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8.
9.
10.

SOLUTIONS

3a\/§ in the sense ABC
0-24 N m in the sense ABCD
20N, 10y =9

Exercises 17b

—

. /2 Nalong CA 2. Mid-point of AC

2\/5 kN at 45° to CB on opposite side to A, mid-point of BC
Divides AC in the ratio 1 :2, ABin theratio 2:1, CBin theratio
4:—1.

Forces are in equilibrium

r = (6i — 2j — 6k)+u(4i + 2j)

EXERCISES 17
\/§P parallel to DB 2a from D on CD produced

2. /31 N at 8 57 to BC on the side of 4, with 3,/3 Nm in the

14.
15.

16.
17.
19.

21

22.
24.
25.

26.

27.
28.

o s W

sense ACB
5i— 5+ 5kN,2i +9+3kNm
5P, 4P, 3P
External division in the same ratio

V205N

. 3i+j—katPy —3i—j+ kath,
. 2k x area, 2A/31

64 kN m

P /5 y=2x —a 13. P\/ﬁ parallel to DB
p=—2,r=2+ 2 + 3k + u2i + 3j)

24C

3\/:/ Nm,6 N'parallel to BA along a line \/7/2 from C
xY—yX =G 18. Mid-point of BC, 2G/3

X' = 3P(cos wt + sinwt), Y = P(2sin wt + cos wt),

G = —4aP(sin wt + cos wt), xY' — yX' = G, (0, 4a/3)

10N, CD 2m from D, AD produced 1-5m from D, AB
produced 2 m from B

—2i, 4f

(@ 5, 1,42 (b) 2:54B, 1-25AD

2\/§N parallel to RP cutting BA produced at X where
AX = 9-5cm. Magnitude unaltered, moment = 0:35 Nm

P\/g, 2P\/§ meeting BC at Y where BY = 0-75a. Couple of

moment 4Pa/\/ 5
R =23Ba+ b+ 2), G = Ma x ¢). aisparallel to c.
(a) P/5/3,2P/3 (b) 100E
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29.
30.
32.

EXERCISES

ADisparallel to BC,q = 1,r = 1
F,=8,2),F,=(—-4,-1

R = 19i — 5 + 8k, G = 30(2i — 105 + 11k)

r = (375 + T-5) + t(19i — 55 + 8k) or its equivalent.

Exercises 18a

2.
4.

5,
6.
8. 32r — h)2/4(3r— h)

2r sin atfa, 2r/m 3. 4r/3=n from the centre

4 of the way up the line from the centre of the base to the
vertex

2pl + 641

3p + 442
§ up the axis from the base

from the end where x = 0

Exercises 18b

L.
2.

2a/3 from the centre rod along its perpendicular bisector
(3\/5 — 4)m from the hypotenuse along its perpendicular
bisector

413 cm from the edge of square opposite the triangle along the
axis of symmetry

. 9a/5 from the base along the axis, 15a/7
. i cm from the centre on the line of centres
. 11a/12, 5a/6 10. 2 m,Ym

EXERCISES 18

. (11i + 4 + 6k)/12 2. 3a,7a; 3a, 6a

9cm, 4cm 7. 14a/3 from AD, 8¢ from CD
2a/(n + 2)from the diameter on its perpendicular bisector

. 7¢m from BC, 6% from DC

a2 — \/3)/2 from AB on the side of D; 5a/2 from BD
(R — F(R® — 1)

(a® — h*/3)/2a — h) from CD

¢, i) 15. 49a./2/48

23a/72 17. at the point (2a/3, 0)
(hipy — h3p2)/Mhipy + hyps), h} k3

(5\/3 — 4m)a/(4n — 3\/3) 20. At the apex of the cone

11

.sin” '3
. (@ + ac + c¢¥/3(a + ¢), bla + 2¢)/3(a + ¢)

117/20,/3 along the axis from the base

. 3\/§a/8 from the base on the axis of symmetry
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SOLUTIONS

26. 1% cm from the larger section
27. (11h% — 16h%)/8(7Th — 8h,) 28. a/2, 5a/16

Exercises 19a

1. /10m 2. Ma?sin? 6/3
3. (a) 4M(a® + b?) (b) 4Ma?
(c) 4Mb? (dy 8Ma*b*[a® + b?)
4. Ma?*/3, Mb?/3
5. (@) Md? (b) Ma?/2 (c) 2Ma?/5
(dy M(a* + b3)2 (e) Ma?/6
6. 00116 kg m? 7. 2Ma?*/3
Exercises 19b
1. 5SMa?*/4 2. Ma*)2
3. 2Ma?/3, 8Ma?/3 4. 2Ma*b?/3(a® + b?)
7. (2h? + 3a?)/20 8. 3Ma?/10
9. 094 kg m? 10. 156Ma?/625, 303Ma?/625
Exercises 19¢
1. z/10 N m
2. 20mrad/s, 487 rad/s®
3.t =13%s 4. 20m rad/s?, 5625
5. 1287 N'm 6. gt’/k
7. $kgm? 8. 4, 0-4kgm?
9. 9-10s

Exercises 19d

1. 2n./(5a/2)

2. Along the rod 73 mgcos 6/5, perpendicular to the rod,

g sin (6/5)
3. 1:5a 4. 0891 m
5. \/ga 6. 1-68s

8. (@) 4n/(2a/g)/3

7
(b) Along the axis mg(43 cos 0 + 27)

8
Perpendicular to the axis —0-25mg sin 6. (6 measured to the
downward vertical)

9. 2n./(a/2kg) 11. 28a/27
Exercises 19¢

1. \/(5g/4a) 2. 125z N m

3. J(g/3a) 4. 2s5in 6/2./(g/3a)

6. /(7g/3a) 7. 0-37\/@%&

472



EXERCISES

Exercises 19f
1. 35J 2. Mv/2
4 R=Ihx/k* +h)—1) 5 x=a//3
6. 1-51*/m
7. w = ./(3g/2a), I = m./(6ga)
8. m/(1-5ga)

EXERCISES 19

. 2Ma?/5, 13Ma?/20

. 5s, 60 rad 3. g — G/am)

. Ta/3 8. 2n./(a/2kg)

. mg/3

. The acceleration is uniform of magnitude 2g/7

I =2

. Acceleration is uniform of magnitude g/8

. Mh?/2, Mh?/6 18. 3Ma?/10, M(0-6h% + 0-1543)

. Mh*(a + 3h)/6(a + b) 22. 0% = 3(/2 — 1)g/4a
C = (92 — 12)A11/2 — 12)

. Hw,y — wy)/N, Kw? — w})/2N

. /9 N m, 8/n rad/s, % rev

. 3Ma?/2, Mg sin 20, Mg(4 — 3 cos 26)/3

. M. /(5ga/2) 32. 10Ma?/9, 2n/(5./2a/6g)

. {mq — mp)/(M/2 + m; + m;) the “amount” is M/4

. 12Ma?, 2n, /(12a/5g) 35. 2n./(149a/21g)
. 2./dmg/(M + 2m), Mmg/(M + 2m)

. @? = 3./2g/10a 38. 2./(15ga/7)

Exercises 20a

1.

u > ftan a, 3g sin «

2. u>1/2/3,g/4

3. 2g/3, mg/3 4. tan~ ! (v?/rg)

5 242m/s,u = 15 6. No

8 67cm

9. 2gb(b + a)/7h* + 2a®) + or — according as the string is

above or below the axle

10. /6ga
Exercises 20b

1. 12,/2rad/s. The path is a vertical straight line

2. /3gl, \/3g/4l 3. 3v%/dgsin «
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4.
7.

SOLUTIONS

2:523,25Tm 5. /[08ga(l — cos 6)]
02 = QF — 4g(1 — cos 0)/3(a — b)

Exercises 20¢

L.

AW

N —

~1 N W

9.
13.
14.
17.
19.
21.
23.
24.

A and B rotate about the C of M with angular speed I/2ma.
The C of M has a speed I/2m in the direction of [

1 2 X 1 2
IMI? + iz = —
z [Ml * ] o [ml M+ m:l

where x is the distance of I from the C of M. Atthe C of M of
the particles

I(1 + 3x%/a?)/m; x = 0, i.e. the blow is given at the C of M.
na/3 5. 0 = w/4; malw?/4
11V/15a 7. 4mv3/25

EXERCISES 20

. 2u/3a

. t = Taw/(5g sin a), d = Ta*w?/(10g sin a),
No. of revs = Taw?/(20ng sin o)

. AX = 4a/3 5. cos 119

. 12(\/5 ~ 1)g/5a 3(ﬁ — 1)g/2a

.o = kKo/(k? + h?) 8. 4I/5m, I/5m
6% = 6g(sin a — sin f)/a(1 + 3sin? G)
—-3:1
mulda — 3x)/4a (@) % (b) 4

= 6,v%/2ug 18. Smv/16,v = /(32ga/9)

a(l + m/M) 20. tan~ ' (&)

P = Mg sin 2a/3, angular acceleration = 2g sin /3
Wy = 71/4ma,(,035 = O,CUCA = I/4ma, RB = 51/12, RC = 1/12

3I/2m/(a® + b))

Exercises 21a

1.

i .\‘.G\PE-“!\-’

1 kg wt., along the rod 2\/3 kg wt., perpendicular to the rod,
1kg wt.
10 kg wt., 30 kg wt.
Eachoneis4 kg wt., 4\/ﬁ kg wt.at tan " ! (}) to the horizontal
33W,/32 5. 30 kg wt.
T = Wtan §/2. Reactions Wtan §/2 and W

~1(8u/3)

= 5W//3, R = W/21/3 at tan_l(f/S to AB
45° 0. ¢,42:5¢m from C along CD
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EXERCISES

12. T=F = Wsina/(1 + cos0),
N = W[cos (0 — ) + cosa]/(1 + cos )
13. N=W,F=W/./3
14. At C (8928 — 28-8x) kg wt., at D (672 + 28-8x) kg wt., all of

the plank
Exercises 21b
1. tan 1 @), tan 1 (3) 2. tan" ' ()
3. 2a./3 4. tan™' (3a/h)
Exercises 21c
1. 50./17 kg wt. 2. a, W2, W
3. 30° 4. 19°6'
5. 1> 4sin6/3n 6. T=W,R=3W]2
7. tanL[(1 — popta)/2u2) 8. T = 5W/8, N = 39W/40
9. ctan 6/a
Exercises 21d
1. 3w/ /2 4. 5,4, %
5. Wtan 6/2 horizontally 6. 3W/2, W/2 vertically

7. At A: W/, /3 horizontally, 3W/2 vertically
At B, C: W/\/g horizontally, W/2 vertically
8. 3W, W, 2W//3; W,/(1/12)
9. AB thrust Wsec 8, BC tension W tan 8
10. AB thrust W/2, BC thrust W.,/3/2, AC tension W./3/4

Exercises 21e

1. T = 6 kg wt. Horizontally 4-8 kg wt., Vertically 16-4 kg wt.
2. P=[}tana + a/h), N = W}sinatan o + a sin a/h + cos o},
F = Wlacosa/h — 4sin ]

u>% 5. 3\/3/5

2W — Wx/[2a;2W + Wx/2a; 5a/4

W./2 at walls, W at the floor

W at walls, 2W at the floor 9. W

T, =T, =TW/8cosecf, X = TWcot 6/8, Y= 1TW/8

SXNAE

EXERCISES 21

1. Wsin B/sin (¢ + B), Wsin a/sin (x + f)
2. 3W/2/2; W22 4. 35°21'
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49

SOLUTIONS

. /5W at tan~1 2 to the horizontal

F=W/2tanb

. F= W/\ﬁ, W\/ﬁ/6 at tan ! (Z/ﬁ) with the horizontal
u=(n+ 2)4

. (tan @ + 2tan o)/(2 — tan 0 tan o)

. At A: horizontally 84 g wt., vertically 187 g wt.

At C: horizontally 84 g wt., vertically 163 g wt.

W/2, W/2 at 60° to the vertical

. W2, bW/a, W& — bja)  23. 2r./2, W/ /2

. 5/2a/4 27. 2&a

At C W/2\/§ horizontally. Thrust 2W/\/§

. W23, W /32 32, W(23 + 2,/2)/20

. 16a/5, 4a/5 38. b < 4a

catl, p>05 42. JIW(W + 0)/2]

. Wrjfn — 2,/2) 46. 3,1, 11b wt,, sin~ ! (,,/3/4)
. (32 — %a

. W[8a*/(a®> + b*)tan"" (a/b) — 1]
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Acceleration
angular, 351
definition, 83
gravity, 117
linked accelerations, 139
relation to force, 113
S.I. units of, 4, 83
variable, 92
Angular momentum,
conservation of, 309
definition, 306
S.I. units of, 306
Angular speed, 72 et seq.
velocity, 75
Associative rule, 19, 21
Astroid, 52
Average speed, 56

Basic quantities, 3
Bolas, 303

Centre of gravity
composite bodies, 341 et seq.
rigid body, 332
some standard bodies, 333 et seq.
standard results, 340
system of particles, 332

Centreof mass of a system of particles
definition, 301
motion of, 303
motion relative to, 309

Centre of percussion, 382

Centroids, 337, 340

Circular motion
acceleration of a particle, 283, 286

Circular motion, (contd.)
forces acting, 285
in a vertical circle, 289
Coefficient of restitution, 241
Commutative law, 19, 20, 37
Compound pendulum, 366, 368
Connected particles, 132, 135, 139,
141
Conservation of energy principle, 220
Conservation of momentum, 232,
241, 246
Conservative force, 218
Cotangent rule for a triangle, 420
Couple
definition, 315
work done by, 377
Cross product, see Vector product

Derived quantities, 4

Directed segment, 6
Displacement, 8, 85
Distributive law, 19, 24, 37, 40
Dot product, see Scalar product

Energy methods for solution of prob-
lems, 375 et seq.
Equilibrium,
coplanar forces, 433 et seq.
general conditions, 409
jointed rods, 426
particle, 181 et seq.
several bodies in contact, 424
three force problems, 418
two force problems, 417
Equimomental systems, 384
Equivalent sets of forces, 314
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Force
centre of parallel forces, 331
conservative, 218
coplanar systems, 181, 316
definition, 113
equivalent systems, 314, 316
relation to,
acceleration, 113
momentum, 113
resultant, 321
S.I. units of, 4, 113
Friction,
angle of, 120
coefficient of sliding friction, 120
static friction, 120
definition, 119
Fundamental quantities, 3

Gravitation,
acceleration, due to, 117
attraction, 117
local constant, 117
universal constant, 117

Hooke’s law, 118, 286

Impact,
elastic bodies,
direct, 240
oblique, 245
inelastic, 231
Newton’s experimental law, 241,
246
Impulse
applied to rigid bodies, 400
constant force, 227
impulsive motion about a fixed
axis, 379
impulsive tension in strings, 235
relation to momentum, 227
S.1. units of, 227
variable, 227
Impulsive tension, 235
Instantaneous speed, definition of, 57

Jointed rods, 426

Kinetic energy,
definition, 214
relation to work, 214
rigid body, 396
system of particles, 310
Kilogramme, 3, 181

Lami’s theorem, 187 (Ex. 10)
Light framework, 430

Line integral, 203

Linked acceleration, 139
Localized vector, 42

Mass, 3
Metre, 3
Modules of elasticity, 118
Moment of a vector, 42, 43, see also
Torque
Momentum
conservation of, 232, 305
definition, 112
moment of, 306
rate of change of, 113
relation to impulse, 229
S.1. units of, 112
Moment of inertia,
calculation of, 352 et seq.
definition, 351
list of standard results, 360
parallel axis theorem, 356
perpendicular axis theorem, 359
Motion in a straight line, 83 et seq.
under constant forces, 130
under variable forces, 170
Movable pulleys, 139

Newton’s laws of motion, 112, 117
Null vector, 7

Parallelogram rule, 9
Particle, definition of, 2
Physical laws, 117 et seq.
Polygon rule, 13
Position vector, 30, 46
Potential energy, 219
Power,

definition, 205
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Power, (contd.)
relation to velocity and force, 206
S.I. unit of, 205
Principle of conservation of energy,
220
Principle of conservation of momen-
tum, 232, 241, 246
Principle of work,
particles, 214, 375
rigid body moving in two dimen-
sions, 397
Projectile,
equation of path, 265
impact, 272
maximum range,
horizontal plane, 263
inclined plane, 270
range,
horizontal plane, 263
inclined plane, 269
time of flight, 263
Pulley systems, 139, 141

Radial components, 450
Radius of gyration, 353
Reaction—total, normal, 119
Relative velocity, 63 et seq.
Right-handed set of axes, 27
Rigid body,
definition, 299
equations of motion,
general, 390
rotating about a fixed axis, 350
kinetic energy,
general, 396
rotating about a fixed axis, 351
principle of work, 327
reaction at axis of rotation, 372
uniform angular acceleration, 361
Routh’s rule, 360

Scalar product, 35

Scalar quantity, 6

Second, 3

Sideslip of a car, 391

Simple equivalent pendulum, 369

Simple harmonic motion,
amplitude, 98
centre, 152
formulae, 99
maximum speed, 98

motion under forces causing
S.HM,, 151 et seq.
period, 99
relation to motion in a circle, 103
(Ex. 4)
Simple pendulum, 155 (Ex. 2)
Speed,

definition, 57
S.I. units, 4, 57
Speed-time graphs, 89
Springs, 118,203
Systems of connected particles, 188
Systems of units, 3

Tension in a light rod, 430
Thrust in a light rod, 430
Time, 3
Tonne, 4
Toppling and sliding, 435
Torque,
definition, 306
relationtoangular momentum, 307
S.I. unit, 306
Transverse components, 450
Triangle rule, 9

Uniform acceleration, 84
Unit tangent to a curve, 31
Unit vector, 7

Vectors
addition, 20
angle between, 7
collinear, 25
components, 11, 26
compounding, 8
coplanar, 25
definition, 6
differentiation, 30
differentiation of unit vectors, 34
division by a scalar, 24
equation of a straight line, 48
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Vectors, (contd.) Weight, 117
integration, 30 Work,
modulus, 7 relation to kinetic energy, 21
multiplication by a scalar, 23 S.1. unit, 198 :
product, 40 Work done by,
rectangular resolution, 27 constant force, 198
resolved part, 37 couple, 377
resultant, 13, 18 extending an elastic thread or
subtraction, 20 spring, 203
unit, 7 variable force, 202
variable, 30
zero, 7
Velocity,

definition, 61
S.1. unit, see Speed
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PURE MATHEMATICS FOR
ADVANCED LEVEL

B. D.Bunday, B.Sc. (Hons.), Ph.D., University
of Bradford :

H. Mulholland, M.Sc.. Liverpool Regional
College of Technology

This textbook of Pure Mathematics is written to meet |
the needs of the student studying for the General |
Certificate of Education at Advanced Level. The book
assumes a knowledge of mathematics up to Ordinary |

“Level, and covers all the pure mathematics necessary §

for the Advanced Level examination in Mathematics of |8
the Northern Universities Joint Matriculation Board. It |

also covers a great majority of the work required for the 8

Advanced Level examinations of the Southern Universi- |
ties ‘Joint Board, the Welsh Joint Committee and Lon-
don University.

The teaching method adopted is for the most part that
suggested by the reports of the Mathematical Associa- |
tion. The emphasis throughout is placed on technique, §
although the authors have indicated where a particular
result needs more vigorous justification than is given in

~ 2 the book. In this-way it is hoped that all students will

progress quickly in the understanding and application
of these techniques without the hindrance of having to

- justify everything they do.

The book includes over 350 worked examples and
about 1800 examples for the student to solve.

540 pages lHlustrated casebound 36s.
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Differential Calculus
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tiation
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tiation
The Logarithmic and Expo-
nential Functions
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Some Applications of the Inte-
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Differential Equations
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